✅ Fix chat interface - restore continuous conversation flow
🎯 Major improvements to MissionControl component: - Always keep input field visible and functional after AI responses - Auto-clear input after submitting questions for better UX - Add dynamic visual indicators (first question vs follow-up) - Improve response layout with clear separation and hints - Enable proper chat-like experience for continuous learning 🌟 Additional enhancements: - Better language-specific messaging throughout interface - Clearer visual hierarchy between input and response areas - Intuitive flow that guides users to ask follow-up questions - Maintains responsive design and accessibility 🔧 Technical changes: - Enhanced MissionControl state management - Improved component layout and styling - Better TypeScript integration across components - Updated tsconfig for stricter type checking
This commit is contained in:
10
node_modules/openai/resources/embeddings.mjs
generated
vendored
10
node_modules/openai/resources/embeddings.mjs
generated
vendored
@@ -1,6 +1,6 @@
|
||||
// File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
|
||||
import { APIResource } from "../core/resource.mjs";
|
||||
import { loggerFor, toFloat32Array } from "../internal/utils.mjs";
|
||||
import { APIResource } from "../resource.mjs";
|
||||
import * as Core from "../core.mjs";
|
||||
export class Embeddings extends APIResource {
|
||||
/**
|
||||
* Creates an embedding vector representing the input text.
|
||||
@@ -20,7 +20,7 @@ export class Embeddings extends APIResource {
|
||||
// See https://github.com/openai/openai-node/pull/1312
|
||||
let encoding_format = hasUserProvidedEncodingFormat ? body.encoding_format : 'base64';
|
||||
if (hasUserProvidedEncodingFormat) {
|
||||
loggerFor(this._client).debug('embeddings/user defined encoding_format:', body.encoding_format);
|
||||
Core.debug('Request', 'User defined encoding_format:', body.encoding_format);
|
||||
}
|
||||
const response = this._client.post('/embeddings', {
|
||||
body: {
|
||||
@@ -37,12 +37,12 @@ export class Embeddings extends APIResource {
|
||||
// and we defaulted to base64 for performance reasons
|
||||
// we are sure then that the response is base64 encoded, let's decode it
|
||||
// the returned result will be a float32 array since this is OpenAI API's default encoding
|
||||
loggerFor(this._client).debug('embeddings/decoding base64 embeddings from base64');
|
||||
Core.debug('response', 'Decoding base64 embeddings to float32 array');
|
||||
return response._thenUnwrap((response) => {
|
||||
if (response && response.data) {
|
||||
response.data.forEach((embeddingBase64Obj) => {
|
||||
const embeddingBase64Str = embeddingBase64Obj.embedding;
|
||||
embeddingBase64Obj.embedding = toFloat32Array(embeddingBase64Str);
|
||||
embeddingBase64Obj.embedding = Core.toFloat32Array(embeddingBase64Str);
|
||||
});
|
||||
}
|
||||
return response;
|
||||
|
||||
Reference in New Issue
Block a user