Initial project structure: MarketScanner - Fear-to-Fortune Trading Intelligence

Features:
- FastAPI backend with stocks, news, signals, watchlist, analytics endpoints
- React frontend with TailwindCSS dark mode trading dashboard
- Celery workers for news fetching, sentiment analysis, pattern detection
- TimescaleDB schema for time-series stock data
- Docker Compose setup for all services
- OpenAI integration for sentiment analysis
This commit is contained in:
mindesbunister
2026-01-08 14:15:51 +01:00
commit 074787f067
58 changed files with 4864 additions and 0 deletions

View File

@@ -0,0 +1,46 @@
"""Buy signal model."""
from sqlalchemy import Column, String, DateTime, Numeric, Integer, ForeignKey
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.sql import func
import uuid
from app.core.database import Base
class BuySignal(Base):
"""Buy signal table model."""
__tablename__ = "buy_signals"
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
stock_id = Column(UUID(as_uuid=True), ForeignKey("stocks.id", ondelete="CASCADE"), nullable=False, index=True)
panic_event_id = Column(UUID(as_uuid=True), ForeignKey("panic_events.id", ondelete="SET NULL"))
# Signal details
signal_time = Column(DateTime(timezone=True), nullable=False, server_default=func.now(), index=True)
signal_price = Column(Numeric(15, 4), nullable=False)
# Confidence scoring
confidence_score = Column(Numeric(5, 4), nullable=False, index=True) # 0 to 1
# Based on pattern
pattern_id = Column(UUID(as_uuid=True), ForeignKey("historical_patterns.id", ondelete="SET NULL"))
expected_recovery_percent = Column(Numeric(8, 4))
expected_recovery_days = Column(Integer)
# Current metrics
current_drawdown_percent = Column(Numeric(8, 4))
current_sentiment_score = Column(Numeric(5, 2))
# Signal status
status = Column(String(20), default="active", index=True) # active, triggered, expired, cancelled
triggered_at = Column(DateTime(timezone=True))
# Outcome tracking
outcome_price = Column(Numeric(15, 4))
outcome_percent = Column(Numeric(8, 4))
outcome_days = Column(Integer)
created_at = Column(DateTime(timezone=True), server_default=func.now())
updated_at = Column(DateTime(timezone=True), server_default=func.now(), onupdate=func.now())