"""Panic event model.""" from sqlalchemy import Column, String, Text, Boolean, DateTime, Numeric, Integer, ForeignKey from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.sql import func import uuid from app.core.database import Base class PanicEvent(Base): """Panic event table model.""" __tablename__ = "panic_events" id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4) stock_id = Column(UUID(as_uuid=True), ForeignKey("stocks.id", ondelete="CASCADE"), nullable=False, index=True) # Event timing start_time = Column(DateTime(timezone=True), nullable=False, index=True) peak_time = Column(DateTime(timezone=True)) end_time = Column(DateTime(timezone=True)) # Price impact price_at_start = Column(Numeric(15, 4), nullable=False) price_at_peak_panic = Column(Numeric(15, 4)) price_at_end = Column(Numeric(15, 4)) max_drawdown_percent = Column(Numeric(8, 4), index=True) # Sentiment avg_sentiment_score = Column(Numeric(5, 2)) min_sentiment_score = Column(Numeric(5, 2)) news_volume = Column(Integer) # Recovery metrics recovery_time_days = Column(Integer) recovery_percent = Column(Numeric(8, 4)) # Classification event_type = Column(String(100), index=True) # earnings_miss, scandal, lawsuit, macro, etc. event_category = Column(String(50)) # company_specific, sector_wide, market_wide # Analysis is_complete = Column(Boolean, default=False) notes = Column(Text) created_at = Column(DateTime(timezone=True), server_default=func.now()) updated_at = Column(DateTime(timezone=True), server_default=func.now(), onupdate=func.now())