Files
marketscanner/backend/app/models/news.py
mindesbunister 074787f067 Initial project structure: MarketScanner - Fear-to-Fortune Trading Intelligence
Features:
- FastAPI backend with stocks, news, signals, watchlist, analytics endpoints
- React frontend with TailwindCSS dark mode trading dashboard
- Celery workers for news fetching, sentiment analysis, pattern detection
- TimescaleDB schema for time-series stock data
- Docker Compose setup for all services
- OpenAI integration for sentiment analysis
2026-01-08 14:15:51 +01:00

35 lines
1.2 KiB
Python

"""News article model."""
from sqlalchemy import Column, String, Text, Boolean, DateTime, Numeric
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.sql import func
import uuid
from app.core.database import Base
class NewsArticle(Base):
"""News article table model."""
__tablename__ = "news_articles"
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
title = Column(Text, nullable=False)
content = Column(Text)
summary = Column(Text)
url = Column(Text, unique=True, nullable=False)
source = Column(String(100), nullable=False, index=True)
author = Column(String(255))
published_at = Column(DateTime(timezone=True), nullable=False, index=True)
fetched_at = Column(DateTime(timezone=True), server_default=func.now())
image_url = Column(Text)
# Sentiment analysis results
sentiment_score = Column(Numeric(5, 2), index=True) # -100 to +100
sentiment_label = Column(String(20)) # negative, neutral, positive
sentiment_confidence = Column(Numeric(5, 4))
# Processing status
is_processed = Column(Boolean, default=False)
processing_error = Column(Text)