Files
srvdocker02_compose_files/compose_files/immich/hwaccel.ml.yml
2025-06-24 13:33:43 +02:00

50 lines
1.5 KiB
YAML
Executable File

<<<<<<<<<<<<<< ✨ Codeium Command 🌟 >>>>>>>>>>>>>>>>
version: "3.8"
# Configurations for hardware-accelerated machine learning
-# If using Unraid or another platform that doesn't allow multiple Compose files,
-# you can inline the config for a backend by copying its contents
-# into the immich-machine-learning service in the docker-compose.yml file.
-
-# See https://immich.app/docs/features/ml-hardware-acceleration for info on usage.
-
services:
armnn:
devices:
- /dev/mali0:/dev/mali0
volumes:
+ - /lib/firmware/mali_csffw.bin:/lib/firmware/mali_csffw.bin:ro
+ - /usr/lib/libmali.so:/usr/lib/libmali.so:ro
- - /lib/firmware/mali_csffw.bin:/lib/firmware/mali_csffw.bin:ro # Mali firmware for your chipset (not always required depending on the driver)
- - /usr/lib/libmali.so:/usr/lib/libmali.so:ro # Mali driver for your chipset (always required)
cpu: {}
cuda:
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities:
- gpu
openvino:
device_cgroup_rules:
- "c 189:* rmw"
devices:
- /dev/dri:/dev/dri
volumes:
- /dev/bus/usb:/dev/bus/usb
openvino-wsl:
devices:
- /dev/dri:/dev/dri
- /dev/dxg:/dev/dxg
volumes:
- /dev/bus/usb:/dev/bus/usb
- /usr/lib/wsl:/usr/lib/wsl
<<<<<<< d16abd3d-45bb-4b23-be9f-e93c9b7d4eae >>>>>>>