🧠 Implement AI Learning System for Stop Loss Decisions
- Add stop-loss-decision-learner.js: Core learning engine
- Add enhanced-autonomous-risk-manager.js: Learning-enhanced decisions
- Add AI learning API and dashboard components
- Add database schema for decision tracking
- Integrate with existing automation system
- Demo scripts and documentation
Result: AI learns from every decision and improves over time! 🚀
This commit is contained in:
218
demo-ai-learning.js
Executable file
218
demo-ai-learning.js
Executable file
@@ -0,0 +1,218 @@
|
||||
#!/usr/bin/env node
|
||||
|
||||
/**
|
||||
* AI Learning System Demo
|
||||
*
|
||||
* Demonstrates the complete stop loss decision learning system
|
||||
*/
|
||||
|
||||
const EnhancedAutonomousRiskManager = require('./lib/enhanced-autonomous-risk-manager.js');
|
||||
const StopLossDecisionLearner = require('./lib/stop-loss-decision-learner.js');
|
||||
|
||||
async function demonstrateAILearning() {
|
||||
console.log('🧠 AI LEARNING SYSTEM DEMONSTRATION');
|
||||
console.log('='.repeat(80));
|
||||
|
||||
console.log(`
|
||||
🎯 WHAT THIS SYSTEM DOES:
|
||||
|
||||
1. 📊 Records every AI decision made near stop loss
|
||||
2. 🔍 Tracks what happens after each decision
|
||||
3. 🧠 Learns from outcomes to improve future decisions
|
||||
4. 🚀 Gets smarter with every trade and decision
|
||||
5. 🏖️ Enables true autonomous beach mode trading
|
||||
|
||||
🔄 LEARNING CYCLE:
|
||||
Decision Made → Outcome Tracked → Pattern Analysis → Improved Decisions
|
||||
`);
|
||||
|
||||
const riskManager = new EnhancedAutonomousRiskManager();
|
||||
const learner = new StopLossDecisionLearner();
|
||||
|
||||
console.log('\n🎬 DEMO SCENARIO: Simulating Decision Learning Process\n');
|
||||
|
||||
// Simulate a series of decisions and outcomes
|
||||
const demoDecisions = [
|
||||
{
|
||||
scenario: 'SOL-PERP position 1.5% from stop loss',
|
||||
decision: 'EMERGENCY_EXIT',
|
||||
distanceFromSL: 1.5,
|
||||
outcome: 'AVOIDED_MAJOR_LOSS',
|
||||
pnlImpact: 5.2
|
||||
},
|
||||
{
|
||||
scenario: 'SOL-PERP position 2.8% from stop loss',
|
||||
decision: 'TIGHTEN_STOP_LOSS',
|
||||
distanceFromSL: 2.8,
|
||||
outcome: 'IMPROVED_PROFIT',
|
||||
pnlImpact: 2.1
|
||||
},
|
||||
{
|
||||
scenario: 'SOL-PERP position 4.2% from stop loss',
|
||||
decision: 'HOLD',
|
||||
distanceFromSL: 4.2,
|
||||
outcome: 'CORRECT_HOLD',
|
||||
pnlImpact: 1.8
|
||||
},
|
||||
{
|
||||
scenario: 'BTC-PERP position 1.2% from stop loss',
|
||||
decision: 'PARTIAL_EXIT',
|
||||
distanceFromSL: 1.2,
|
||||
outcome: 'REDUCED_RISK',
|
||||
pnlImpact: 0.8
|
||||
}
|
||||
];
|
||||
|
||||
console.log('📝 RECORDING DECISIONS FOR LEARNING:\n');
|
||||
|
||||
const decisionIds = [];
|
||||
|
||||
for (const demo of demoDecisions) {
|
||||
console.log(`🎯 Scenario: ${demo.scenario}`);
|
||||
console.log(` Decision: ${demo.decision}`);
|
||||
|
||||
// Record the decision
|
||||
const decisionId = await learner.recordDecision({
|
||||
tradeId: `demo_${Date.now()}_${Math.random().toString(36).substr(2, 5)}`,
|
||||
symbol: demo.scenario.split(' ')[0],
|
||||
decision: demo.decision,
|
||||
distanceFromSL: demo.distanceFromSL,
|
||||
reasoning: `Demo decision at ${demo.distanceFromSL}% distance`,
|
||||
currentPrice: 180 + Math.random() * 10,
|
||||
confidenceScore: 0.7 + Math.random() * 0.2,
|
||||
expectedOutcome: 'BETTER_RESULT'
|
||||
});
|
||||
|
||||
if (decisionId) {
|
||||
decisionIds.push({ id: decisionId, demo });
|
||||
console.log(` ✅ Recorded decision ${decisionId}`);
|
||||
}
|
||||
|
||||
console.log('');
|
||||
}
|
||||
|
||||
console.log('⏱️ Simulating time passage and outcome assessment...\n');
|
||||
|
||||
// Wait a moment to simulate time passage
|
||||
await new Promise(resolve => setTimeout(resolve, 2000));
|
||||
|
||||
console.log('🔍 ASSESSING DECISION OUTCOMES:\n');
|
||||
|
||||
for (const { id, demo } of decisionIds) {
|
||||
console.log(`📊 Assessing decision ${id}:`);
|
||||
console.log(` Outcome: ${demo.outcome}`);
|
||||
console.log(` P&L Impact: +$${demo.pnlImpact}`);
|
||||
|
||||
// Assess the outcome
|
||||
const assessment = await learner.assessDecisionOutcome({
|
||||
decisionId: id,
|
||||
actualOutcome: demo.outcome,
|
||||
timeToOutcome: 5 + Math.floor(Math.random() * 10), // 5-15 minutes
|
||||
pnlImpact: demo.pnlImpact,
|
||||
additionalContext: {
|
||||
scenario: demo.scenario,
|
||||
marketConditions: 'Demo simulation'
|
||||
}
|
||||
});
|
||||
|
||||
if (assessment) {
|
||||
console.log(` ✅ Assessment: ${assessment.wasCorrect ? 'CORRECT' : 'INCORRECT'} (Score: ${assessment.learningScore.toFixed(2)})`);
|
||||
}
|
||||
|
||||
console.log('');
|
||||
}
|
||||
|
||||
console.log('🧠 ANALYZING LEARNING PATTERNS:\n');
|
||||
|
||||
const patterns = await learner.analyzeDecisionPatterns();
|
||||
|
||||
if (patterns) {
|
||||
console.log('📈 SUCCESSFUL DECISION PATTERNS:');
|
||||
patterns.successfulPatterns.forEach(pattern => {
|
||||
console.log(` ${pattern.decisionType}: ${pattern.successRate.toFixed(1)}% success rate (${pattern.sampleSize} samples)`);
|
||||
});
|
||||
|
||||
if (patterns.failurePatterns.length > 0) {
|
||||
console.log('\n📉 AREAS FOR IMPROVEMENT:');
|
||||
patterns.failurePatterns.forEach(pattern => {
|
||||
console.log(` ${pattern.decisionType}: ${pattern.successRate.toFixed(1)}% success rate (${pattern.sampleSize} samples)`);
|
||||
});
|
||||
}
|
||||
|
||||
console.log('\n🎯 DISTANCE OPTIMIZATION:');
|
||||
Object.entries(patterns.distanceOptimization).forEach(([range, data]) => {
|
||||
console.log(` ${range}: ${data.successRate.toFixed(1)}% success, optimal threshold: ${data.optimalThreshold.toFixed(2)}%`);
|
||||
});
|
||||
}
|
||||
|
||||
console.log('\n🚀 GENERATING SMART RECOMMENDATION:\n');
|
||||
|
||||
// Test smart recommendation system
|
||||
const recommendation = await learner.getSmartRecommendation({
|
||||
distanceFromSL: 2.5,
|
||||
symbol: 'SOL-PERP',
|
||||
marketConditions: {
|
||||
trend: 'BULLISH',
|
||||
volatility: 0.05,
|
||||
timeOfDay: new Date().getHours()
|
||||
}
|
||||
});
|
||||
|
||||
console.log(`🎯 Smart Recommendation for 2.5% distance from SL:`);
|
||||
console.log(` Suggested Action: ${recommendation.suggestedAction}`);
|
||||
console.log(` Confidence: ${(recommendation.confidence * 100).toFixed(1)}%`);
|
||||
console.log(` Reasoning: ${recommendation.reasoning}`);
|
||||
console.log(` Learning-Based: ${recommendation.learningBased ? 'YES' : 'NO'}`);
|
||||
|
||||
if (recommendation.supportingData) {
|
||||
console.log(` Supporting Data: ${recommendation.supportingData.historicalSamples} similar situations`);
|
||||
}
|
||||
|
||||
console.log('\n📊 GENERATING COMPREHENSIVE LEARNING REPORT:\n');
|
||||
|
||||
const report = await learner.generateLearningReport();
|
||||
|
||||
if (report) {
|
||||
console.log('📋 LEARNING SYSTEM STATUS:');
|
||||
console.log(` Total Decisions: ${report.summary.totalDecisions}`);
|
||||
console.log(` System Confidence: ${(report.summary.systemConfidence * 100).toFixed(1)}%`);
|
||||
console.log(` Successful Patterns: ${report.summary.successfulPatterns}`);
|
||||
|
||||
if (report.recommendations.length > 0) {
|
||||
console.log('\n💡 AI RECOMMENDATIONS:');
|
||||
report.recommendations.forEach(rec => {
|
||||
console.log(` ${rec.type} (${rec.priority}): ${rec.message}`);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
console.log('\n🏖️ BEACH MODE DEMONSTRATION:\n');
|
||||
|
||||
console.log(`
|
||||
🌊 ENHANCED BEACH MODE WITH AI LEARNING:
|
||||
|
||||
✅ System now records every decision made near stop loss
|
||||
✅ Tracks outcomes and learns from what works/doesn't work
|
||||
✅ Adjusts decision thresholds based on historical success
|
||||
✅ Provides smart recommendations based on learned patterns
|
||||
✅ Continuously improves decision-making quality
|
||||
✅ Builds confidence through validated success patterns
|
||||
|
||||
🎯 RESULT: Your AI doesn't just make autonomous decisions...
|
||||
It LEARNS from every decision to become smarter!
|
||||
|
||||
🚀 NEXT STEPS:
|
||||
1. Start automation with enhanced learning system
|
||||
2. Let it run and make decisions autonomously
|
||||
3. Check learning dashboard for insights
|
||||
4. Watch confidence and success rates improve over time
|
||||
5. Enjoy the beach knowing your AI is getting smarter! 🏖️
|
||||
`);
|
||||
|
||||
console.log('\n✨ DEMO COMPLETE! Your AI is ready to learn and improve! ✨\n');
|
||||
}
|
||||
|
||||
// Run the demonstration
|
||||
if (require.main === module) {
|
||||
demonstrateAILearning().catch(console.error);
|
||||
}
|
||||
Reference in New Issue
Block a user