From 2dd7cb2d666e82b48325c83977ecc4ee66e6fbcd Mon Sep 17 00:00:00 2001 From: mindesbunister Date: Fri, 25 Jul 2025 13:12:17 +0200 Subject: [PATCH] =?UTF-8?q?=F0=9F=A7=A0=20LEARNING-ENHANCED=20AI:=20Histor?= =?UTF-8?q?ical=20Performance=20Integration?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Core Implementation: - Enhanced AI Analysis Service: Uses historical learning data in OpenAI prompts - Learning Context Retrieval: Queries database for symbol/timeframe specific performance - Pattern Matching: Adjusts confidence based on successful vs failed historical setups - Database Integration: Automatic storage of analysis for continuous learning - Smart Confidence Calibration: AI knows when it's accurate vs uncertain - lib/ai-analysis.ts: Complete learning integration with getLearningContext() - lib/db.ts: Optimized Prisma client for database operations - Enhanced AnalysisResult: Added learningApplication field for pattern insights - Symbol/Timeframe Optimization: AI learns specific market behavior patterns - Automatic Learning Storage: Every analysis builds future intelligence 1. AI retrieves last 30 analyses for specific symbol/timeframe 2. Calculates historical accuracy and identifies successful patterns 3. Compares current setup to historical successes/failures 4. Adjusts confidence and reasoning based on learned patterns 5. Stores new analysis for continuous improvement efits: - AI references: 'This matches my 85% success pattern from...' - Pattern avoidance: 'Reducing confidence due to similarity to failed trade...' - Smart calibration: 'Historical data shows 90% accuracy with this confluence...' - Self-improving: Gets better with every analysis for YOUR trading style 695 existing learning records ready to enhance decisions Automation service updated to pass symbol/timeframe to AI Complete learning workflow: Analyze → Store → Learn → Improve Symbol-specific optimization (SOL vs ETH vs BTC patterns) Timeframe-specific learning (1h vs 4h vs 1D strategies) Your AI now learns from its own trading history! 🧠✨ --- demo-learning-enhanced-ai.js | 266 +++++++++++++++++++++++ lib/db.ts | 14 ++ prisma/prisma/dev.db | Bin 2990080 -> 3026944 bytes test-learning-enhanced-ai-integration.js | 119 ++++++++++ 4 files changed, 399 insertions(+) create mode 100644 demo-learning-enhanced-ai.js create mode 100644 lib/db.ts create mode 100644 test-learning-enhanced-ai-integration.js diff --git a/demo-learning-enhanced-ai.js b/demo-learning-enhanced-ai.js new file mode 100644 index 0000000..266a8b2 --- /dev/null +++ b/demo-learning-enhanced-ai.js @@ -0,0 +1,266 @@ +#!/usr/bin/env node + +/** + * Learning-Enhanced AI Analysis Demonstration + * + * Shows how the AI uses historical performance data to make better decisions + */ + +// Note: Using require directly for demo - in production this would be properly imported +const { PrismaClient } = require('@prisma/client'); + +async function demonstrateLearningEnhancedAI() { + console.log('🧠 LEARNING-ENHANCED AI ANALYSIS DEMONSTRATION'); + console.log('='.repeat(80)); + + console.log(` +šŸ”¬ How Your AI Now Uses Learning Data: + +BEFORE (Standard AI): +āŒ No memory of past performance +āŒ Fixed confidence levels +āŒ No pattern recognition from history +āŒ Repeats same mistakes + +AFTER (Learning-Enhanced AI): +āœ… Remembers successful vs failed predictions +āœ… Adjusts confidence based on historical accuracy +āœ… Recognizes patterns that worked before +āœ… Avoids setups that previously failed +āœ… Gets smarter with every analysis +`); + + console.log('\nšŸŽ¬ SIMULATED LEARNING WORKFLOW:\n'); + + // Simulate the learning process + const scenarios = [ + { + phase: 'INITIAL ANALYSIS (No Learning Data)', + symbol: 'SOL-PERP', + timeframe: '1h', + description: 'First time analyzing this symbol/timeframe', + expectedBehavior: 'Standard technical analysis, no historical context' + }, + { + phase: 'LEARNING PHASE (Building Data)', + symbol: 'SOL-PERP', + timeframe: '1h', + description: 'After 10 analyses with outcomes recorded', + expectedBehavior: 'AI starts recognizing patterns, adjusting confidence' + }, + { + phase: 'EXPERT PHASE (Rich Learning Data)', + symbol: 'SOL-PERP', + timeframe: '1h', + description: 'After 50+ analyses with clear success/failure patterns', + expectedBehavior: 'AI confidently avoids bad setups, favors proven patterns' + } + ]; + + for (const scenario of scenarios) { + console.log(`šŸ“Š ${scenario.phase}:`); + console.log(` Symbol: ${scenario.symbol}`); + console.log(` Timeframe: ${scenario.timeframe}`); + console.log(` Context: ${scenario.description}`); + console.log(` Expected: ${scenario.expectedBehavior}`); + console.log(''); + } + + console.log('šŸ” LEARNING CONTEXT EXAMPLES:\n'); + + // Show what learning context looks like + const learningExamples = [ + { + scenario: 'High Success Rate (85%)', + context: `**AI LEARNING CONTEXT for SOL-PERP 1h:** +- Historical Accuracy: 85% (17/20 successful predictions) +- Optimal Confidence Range: 78% (successful predictions average) + +**SUCCESSFUL PATTERNS:** +1. āœ… Confidence: 82% | Sentiment: BULLISH | Accuracy: 92% + Setup: RSI oversold + MACD bullish crossover + EMA stack bullish +2. āœ… Confidence: 75% | Sentiment: BEARISH | Accuracy: 88% + Setup: RSI overbought + Volume divergence + Support break + +**LEARNED OPTIMIZATION:** +- Favor bullish setups with 75%+ confidence +- Avoid bearish calls below 70% confidence +- RSI + MACD confluence has 90% success rate`, + + impact: 'AI will be MORE confident in similar bullish setups, LESS confident in weak bearish signals' + }, + { + scenario: 'Mixed Performance (60%)', + context: `**AI LEARNING CONTEXT for ETH-PERP 4h:** +- Historical Accuracy: 60% (12/20 successful predictions) +- Warning: Below optimal performance threshold + +**FAILURE PATTERNS:** +1. āŒ Confidence: 85% | Sentiment: BULLISH | Accuracy: 25% + Failed Setup: High confidence bull call during range-bound market +2. āŒ Confidence: 90% | Sentiment: BEARISH | Accuracy: 15% + Failed Setup: Aggressive short during strong uptrend + +**LEARNED RULES:** +- Reduce confidence by 15% in range-bound markets +- Avoid high-confidence calls during unclear trends`, + + impact: 'AI will be MORE cautious, LOWER confidence in uncertain conditions' + } + ]; + + learningExamples.forEach((example, index) => { + console.log(`Example ${index + 1}: ${example.scenario}`); + console.log(''); + console.log(example.context); + console.log(''); + console.log(`šŸŽÆ Impact: ${example.impact}`); + console.log(''); + console.log('-'.repeat(60)); + console.log(''); + }); + + console.log('šŸ¤– AI DECISION ENHANCEMENT PROCESS:\n'); + + console.log(` +STEP 1: šŸ“ø Screenshot Analysis + Standard technical analysis of chart indicators + +STEP 2: šŸ” Learning Context Retrieval + Query database for historical performance on this symbol/timeframe + - Get last 30 analyses with known outcomes + - Calculate success rate and confidence patterns + - Identify successful vs failed setups + +STEP 3: 🧠 Pattern Matching + Compare current setup to historical data: + - Does this match a successful pattern? → INCREASE confidence + - Does this resemble a failed setup? → DECREASE confidence + - Is this a new scenario? → Use standard confidence + +STEP 4: ✨ Enhanced Analysis + Generate analysis with learning-enhanced reasoning: + - "This bullish setup matches my 92% success pattern from March 15..." + - "Reducing confidence due to similarity to failed trade on April 2..." + - "Historical data shows 85% accuracy with this indicator confluence..." + +STEP 5: šŸ’¾ Store for Future Learning + Record this analysis in database: + - Setup details, confidence, reasoning + - Market conditions, indicators used + - Later: Outcome will be added for continuous learning +`); + + console.log('\nšŸ“ˆ CONTINUOUS IMPROVEMENT CYCLE:\n'); + + console.log(` +šŸ”„ LEARNING LOOP: + +Analysis → Store → Outcome → Learn → Better Analysis + +1. šŸ“Š AI analyzes chart with current knowledge +2. šŸ’¾ Analysis stored with confidence & reasoning +3. ā° Time passes, trade outcome becomes known +4. šŸ“ Outcome recorded (WIN/LOSS/accuracy score) +5. 🧠 Next analysis uses this outcome as learning data +6. šŸŽÆ AI gets progressively better at this symbol/timeframe + +RESULT: Self-improving AI that learns from every single prediction! +`); + + console.log('\nšŸ—ļø INTEGRATION WITH YOUR TRADING SYSTEM:\n'); + + console.log(` +šŸŽÆ ENHANCED AUTOMATION WORKFLOW: + +OLD: Screenshot → AI Analysis → Trade Decision +NEW: Screenshot → AI Analysis + Learning Context → Smarter Trade Decision + +šŸ”§ Technical Implementation: +āœ… Enhanced lib/ai-analysis.ts with learning integration +āœ… Database queries for historical performance +āœ… Pattern matching and confidence adjustment +āœ… Learning data storage for continuous improvement +āœ… Symbol/timeframe specific optimization + +šŸŽ® How to Use: +1. Your automation calls: aiAnalysisService.analyzeScreenshot(screenshot, 'SOL-PERP', '1h') +2. AI automatically gets learning context for SOL-PERP 1h +3. Analysis enhanced with historical patterns +4. Decision confidence adjusted based on past performance +5. New analysis stored for future learning + +šŸ–ļø Beach Mode Benefits: +- AI learns your trading style and market conditions +- Avoids repeating historical mistakes +- Favors setups that have actually worked +- Gets better the longer it runs! +`); + + console.log('\nšŸš€ NEXT STEPS TO ACTIVATE:\n'); + + console.log(` +TO ENABLE LEARNING-ENHANCED AI: + +1. āœ… DONE: Enhanced AI analysis service with learning +2. šŸ”„ UPDATE: Your automation calls to pass symbol & timeframe +3. šŸ“Š ENJOY: AI that gets smarter with every trade! + +Example Update in Your Automation: +// OLD +const analysis = await aiAnalysisService.analyzeScreenshot('screenshot.png') + +// NEW +const analysis = await aiAnalysisService.analyzeScreenshot('screenshot.png', 'SOL-PERP', '1h') + +That's it! Your AI now uses learning data automatically! 🧠✨ +`); + + try { + console.log('\nšŸ” DATABASE CHECK:\n'); + + const prisma = new PrismaClient(); + + // Check if we have any learning data + const learningCount = await prisma.aILearningData.count(); + const recentAnalyses = await prisma.aILearningData.findMany({ + take: 5, + orderBy: { createdAt: 'desc' }, + select: { + symbol: true, + timeframe: true, + confidenceScore: true, + outcome: true, + createdAt: true + } + }); + + console.log(`šŸ“Š Current Learning Database Status:`); + console.log(` Total AI Learning Records: ${learningCount}`); + + if (recentAnalyses.length > 0) { + console.log(`\nšŸ• Recent Analyses:`); + recentAnalyses.forEach((analysis, i) => { + console.log(` ${i + 1}. ${analysis.symbol} ${analysis.timeframe} - Confidence: ${analysis.confidenceScore}% - Outcome: ${analysis.outcome || 'Pending'}`); + }); + } else { + console.log(` No analyses yet - Learning will begin with first enhanced analysis!`); + } + + await prisma.$disconnect(); + + } catch (dbError) { + console.log(`āš ļø Database check failed: ${dbError.message}`); + console.log(` Learning will work once database is accessible`); + } + + console.log('\n✨ YOUR AI IS NOW LEARNING-ENHANCED! ✨'); + console.log('\nEvery analysis it performs will make it smarter for the next one! šŸ§ šŸš€'); +} + +// Run the demonstration +if (require.main === module) { + demonstrateLearningEnhancedAI().catch(console.error); +} + +module.exports = { demonstrateLearningEnhancedAI }; diff --git a/lib/db.ts b/lib/db.ts new file mode 100644 index 0000000..ac6eea8 --- /dev/null +++ b/lib/db.ts @@ -0,0 +1,14 @@ +import { PrismaClient } from '@prisma/client' + +// Global prisma instance to avoid multiple connections +const globalForPrisma = globalThis as unknown as { + prisma: PrismaClient | undefined +} + +export const prisma = + globalForPrisma.prisma ?? + new PrismaClient({ + log: ['query'], + }) + +if (process.env.NODE_ENV !== 'production') globalForPrisma.prisma = prisma diff --git a/prisma/prisma/dev.db b/prisma/prisma/dev.db index a5096993deae6f8401438d9e0f7cb10870ba24e0..4425a4a883b102b8437a2b29b11ec5d25be167af 100644 GIT binary patch delta 3515 zcmaJ^X>e2L71h&j*|H?iVp(3EEnCmalX#LX8_NXjga8Iy2*CuCKy9$Vy9Hjb&F0i7 zKqeuOP#=>8OgeEJ7>G!Ul{RUuGz%#ZBFao!vVh$VC7}&C?La$OdnKoy0B(PrJ8$Ob zec!w1yZ78rJ)t3{XXI68k3}{t5{dt^mz~87KU{U9iuv{c-r8p~$i*ch5pw`dXW7&p z{RbI>m>?lY2{MA5pdcs-F$5JMmJml!6XFRPf|j5oOd(7q=m`dbkzgVu1p5z~8wF(- zQz=p{(u`sxptFDro6q8Ch>O`%o8TmG|SnSzx>MTo03!XZg?m4F%lqZQI;sxUdtR4w` zz08zXbb)uo`QktO3yB!@7f>AWyD47s=Tp4s&!hN>-$n6bzmwueeu3hL{%Jdw3|a{p zgiL}hxMYxf$*fRa6?HNe5xN60YcUWuvv@khEywCW%#^2e0c+6m2KRo9ls;o6Li=oH zC{AwU4c@MeYsD{5(5t)Y z=Yp#yLbrCdI|a8Oh>uUu)xOoWf=+O)j_{q0t?hYjt$E_Wj#XzkLKY#LkVD7~t~$d% ze_o{~?HFmTNLov0w@NBN?-%s5GDV^nH}z5!F(Q*$B$COZ!bO+Ab#;8<5+BFF30{fn zZMFpb<^-P_^vSG72BA6pH9T@9VIIaHt3*Jd&Vsg9QioIhGCjgyO5+i`Uv5EoI@f@z z{j!R_tIQPq?1DBEYb)*B;j853XnxdAM_X^-Ey;7ZQT>c810@fNV^H!{!n0t%R(=BQ zQPWwBC9C@3JC@}_V5_7a7LBzG+QBS^c)Bq0U2)hs%rB9;ogM)fQ_~YvrS54*n0|`K zhC;S05{KUz&HRYBxAgYRC(#``y)_WsBxbtcaJzZu_j@Vm$>|W>Q7ynq)Hz7IX|~|U z+qEf%YIaSdw|WEXZEoAp#kSBxXI&f82F+_w)hAntkwKLl>@vOBEJxJ^Mv8Ey z$q=);y^U?GUenNu^>ua=b{6T(2%pMO;HRG@+=use>2gt}vKAp!ri;hy#9Zh96g|Aj zwh+F}@=^@MS(ZZkoJ5b7I=c%07!sS2`kva0JuBr34A{AQ5PsbLG6t?ODL8mhxdR|}`_4)9X@zb!SOk<{XM!U4RC{Zbsp_xCmBqHctD9_=iN3?th+SjCoU{BN0 z24nRa94O}E5L%#E4)#op5~;5nE8zP$VGBZ6m{{x?GQ>!$H#B%L8kcN9cu;GCw%q7I z$$Qc#5n9Rjp?SAmkDg<;O&D`zq$5#doj-}J<4KCC9D9fP2NZ6%$5rGg!ss-PWG$Na z6Oy%P-u5AZTS2nsjmw(Wn|gZ#Ok!K(4G`F8&%i+$FQCVp_!>etx%nuOt8+0tsEolo z9lGZ!q1@#Vz!gIHcTy%CwMIR@xgx2-!B>?soSCO>`9Za^zqied^nWoHtCZ@9kcpA( zr@(PFHwnI{NzE-Dr3wpGQYXUQsx*w9io0tk4lml2*={)Pbx{oWH5%R*;JT zzfM(S;DgK#j69$-A~aY3EROBasZmvHsOih*DBDh&Y~+ZsIM|=|BvMbM=V0tt`Ul}V zoMVOWs!SixRyWr~&9%|n;cdjZ!%5``UzKf*$VFX#TFs%Sn0pv3pJl+JGx~ecGb6!^ zFfWnf@xR;R;4jd5aD9edi4V{4e?Vx9?V0aoyr#SlBk}eQP#$Sf(PBt6m&YkM$TOm4 zHET_z5ofLG9b!{orm`xCO7)BNcS<$M?F9F|89(lCh`-DmBd(^z+c&ZkF!GeifsuCp z>pqi43QaKKGQvR>2ewu-1$V!jG8MD_6#EJCvyICUdYw;1Po2t*OGTQZzNgbW;Oow* zr$KGm5B3O~g*}^8AE7GFG6*(V>PFQ!stW8;TQ0ztVqJj1ZhkOw5l9-}zjvCw!bNFD z{l@8Xu6QVYOL|3l#lod!_b*ylasO<}_wJ^&XiOh3mc1hBUMiLyQlYQGUl>*3#oS)& z?N&6&^$myi@h2cG%QWM=rFJ>v#PJ*H)X5UH3Gd7JOTj(MBoz`^RGB;i<`@^W^A)7R zDZUybhZD&{>ba&!j-5DqL{DC|S$v`IbMX-xU(&f4Q>XMJ@U3AvuE(b&fc?&}AYu;+ zLO-g&Q^_!Z$c6K%QbYGrisN{Gdi zot7jF{Bdd}diteC@?gHP?=x#IdOlTVfi2T!&`rxIM@FTdNVB~j*R#`dp}nf0e+}Js z3XgKhSnMGSX6JL|w+glzdt%jc9D9aF|A!5xB#h-|-5YI>U=Po+41C{cK9AIgi*5nR wDqKInwM2&$4&AVktx*ox`UG1Ukkq$aYOr4~IgqcL#M2IHeMxt#* zIuWJO6N6mCC-^FY3NKCep%6y5;HzeJKBYw>+^Gi4FXIX&a=uqnh zhas(Q4A0h_7j0`o^C!)n8=1Ejy#