📚 COMPREHENSIVE KNOWLEDGE DOCUMENTATION

ADVANCED SYSTEM KNOWLEDGE:
- Superior parallel screenshot system (60% performance gain)
- AI learning system architecture and decision flow
- Orphaned order cleanup integration patterns
- Critical technical fixes and troubleshooting guide
- Database schema best practices
- Memory leak prevention strategies

- AI learning system patterns and functions
- Error handling best practices for trading systems
- Integration patterns for position monitoring
- Performance optimization rules
- UI/UX consistency requirements
- Critical anti-patterns to avoid

- Added links to new knowledge base documents
- Comprehensive documentation structure
- Development guides and best practices
- Performance optimizations summary

- 60% screenshot performance improvement techniques
- AI learning system that adapts trading decisions
- Container stability and crash prevention
- Frontend-backend consistency requirements
- Integration strategies for existing infrastructure

This documentation preserves critical insights from complex debugging sessions and provides patterns for future development.
This commit is contained in:
mindesbunister
2025-07-26 15:12:57 +02:00
parent 545a1bd8d0
commit 71694ca660
12 changed files with 2155 additions and 359 deletions

302
.github/copilot-instructions.md vendored Normal file
View File

@@ -0,0 +1,302 @@
# GitHub Copilot Instructions for Trading Bot Development
## 🎯 Project Context & Architecture
This is an AI-powered trading automation system with advanced learning capabilities. When working on this codebase:
### Core System Components
1. **Superior Parallel Screenshot System** - 60% faster than sequential capture
2. **AI Learning System** - Adapts trading decisions based on outcomes
3. **Orphaned Order Cleanup** - Automatic cleanup when positions close
4. **Position Monitoring** - Frequent checks with integrated cleanup triggers
### Critical File Relationships
```
app/api/automation/position-monitor/route.js → Monitors positions + triggers cleanup
lib/simplified-stop-loss-learner.js → AI learning core with pattern recognition
lib/superior-screenshot-service.ts → Parallel screenshot capture system
lib/enhanced-autonomous-risk-manager.js → Risk management with AI integration
```
## 🧠 AI Learning System Patterns
### Always Include These Functions in Learning Classes:
```javascript
async generateLearningReport() {
// Return comprehensive learning status
return {
summary: { totalDecisions, systemConfidence, successRate },
insights: { thresholds, confidenceLevel },
recommendations: []
};
}
async getSmartRecommendation(requestData) {
// Analyze patterns and return AI recommendation
const { distanceFromSL, symbol, marketConditions } = requestData;
// Return: { action, confidence, reasoning }
}
async recordDecision(decisionData) {
// Log decision for learning with unique ID
const id = `decision_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
// Store in database for pattern analysis
}
async assessDecisionOutcome(outcomeData) {
// Update decision with actual result for learning
// Calculate if decision was correct based on outcome
}
```
### Database Operations Best Practices:
```javascript
// ALWAYS provide unique IDs for Prisma records
await prisma.ai_learning_data.create({
data: {
id: `${prefix}_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
// ... other fields
}
});
// Use correct import path
const { getDB } = require('./db'); // NOT './database-util'
```
## 🔧 Error Handling Patterns
### Function Existence Checks:
```javascript
// Always check if functions exist before calling
if (typeof this.learner.generateLearningReport === 'function') {
const report = await this.learner.generateLearningReport();
} else {
// Fallback to alternative method
const status = await this.learner.getLearningStatus();
}
```
### Comprehensive Try-Catch:
```javascript
try {
const result = await aiFunction();
return result;
} catch (error) {
await this.log(`❌ AI function error: ${error.message}`);
return fallbackResult(); // Always provide fallback
}
```
## 📊 Integration Patterns
### Position Monitor Integration:
```javascript
// When no position detected, check for orphaned orders
if (!result.hasPosition) {
console.log('📋 No active positions detected - checking for orphaned orders...');
try {
const ordersResponse = await fetch(`${baseUrl}/api/drift/orders`);
if (ordersResponse.ok) {
const ordersData = await ordersResponse.json();
if (ordersData.orders?.length > 0) {
// Trigger cleanup
const cleanupResponse = await fetch(`${baseUrl}/api/drift/cleanup-orders`, {
method: 'POST'
});
// Handle cleanup result
}
}
} catch (error) {
// Handle error gracefully
}
}
```
### Parallel Processing for Screenshots:
```javascript
// Use Promise.allSettled for parallel processing
const promises = timeframes.map(timeframe =>
captureTimeframe(timeframe, symbol, layoutType)
);
const results = await Promise.allSettled(promises);
// Process results with error isolation
results.forEach((result, index) => {
if (result.status === 'fulfilled') {
// Handle success
} else {
// Handle individual failure without breaking others
}
});
```
## 🎯 Performance Optimization Rules
### Screenshot Capture:
- Always use parallel processing for multiple timeframes
- Reuse browser sessions to avoid login/captcha
- Isolate errors so one failure doesn't break others
- Prefer `Promise.allSettled` over `Promise.all`
### Database Queries:
- Use indexed fields for frequent searches (symbol, createdAt)
- Batch operations when possible
- Include proper error handling for connection issues
### Container Optimization:
- Check syntax before deployment: `node -c filename.js`
- Use health checks for monitoring
- Implement graceful shutdown handling
## 🧪 Testing Requirements
### Always Include These Tests:
```javascript
// Test AI learning functions
const learner = new SimplifiedStopLossLearner();
const report = await learner.generateLearningReport();
console.log('Learning report:', report.summary);
// Test API endpoints
const response = await fetch('/api/automation/position-monitor');
const result = await response.json();
console.log('Position monitor working:', result.success);
// Test error scenarios
try {
await riskyFunction();
} catch (error) {
console.log('Error handling working:', error.message);
}
```
## 🎨 UI/UX Patterns
### Preset Configuration:
```javascript
// Frontend presets MUST match backend exactly
const TRADING_PRESETS = {
scalp: ['5m', '15m', '30m'], // NOT ['5m', '15m', '1h']
day: ['1h', '2h'], // NOT ['1h', '4h', '1d']
swing: ['4h', '1D'],
extended: ['1m', '3m', '5m', '15m', '30m', '1h', '4h', '1D']
};
```
### Status Display:
```javascript
// Always provide detailed feedback
return {
success: true,
monitor: {
hasPosition: false,
orphanedOrderCleanup: {
triggered: true,
success: true,
message: 'Cleaned up 2 orphaned orders',
summary: { totalCanceled: 2 }
}
}
};
```
## 🔍 Debugging Strategies
### Container Issues:
```bash
# Check for syntax errors
find . -name "*.js" -exec node -c {} \;
# Monitor logs for patterns
docker logs trader_dev --since="1m" | grep -E "(Error|unhandled|crash)"
# Test specific components
node test-learning-system.js
```
### Integration Issues:
```bash
# Test API endpoints individually
curl -s http://localhost:9001/api/automation/position-monitor | jq .
# Verify database connectivity
node -e "const {getDB} = require('./lib/db'); getDB().then(() => console.log('DB OK'));"
```
## 🚨 Critical Anti-Patterns to Avoid
### ❌ Don't Do This:
```javascript
// Missing error handling
const report = await this.learner.generateLearningReport(); // Will crash if function missing
// Redundant polling
setInterval(checkOrders, 60000); // When position monitor already runs frequently
// Frontend/backend preset mismatch
backend: ['5m', '15m', '1h']
frontend: ['5m', '15m', '30m'] // Will cause confusion
// Missing unique IDs
await prisma.create({ data: { symbol, timeframe } }); // Will fail validation
```
### ✅ Do This Instead:
```javascript
// Defensive programming
if (typeof this.learner.generateLearningReport === 'function') {
try {
const report = await this.learner.generateLearningReport();
} catch (error) {
await this.log(`Report generation failed: ${error.message}`);
}
}
// Leverage existing infrastructure
// Add cleanup to existing position monitor instead of new polling
// Ensure consistency
const PRESETS = { scalp: ['5m', '15m', '30m'] }; // Same in frontend and backend
// Always provide unique IDs
const id = `${type}_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
```
## 🎯 Configuration Standards
### Environment Variables:
```javascript
// Always provide fallbacks
const apiKey = process.env.OPENAI_API_KEY || '';
if (!apiKey) {
throw new Error('OPENAI_API_KEY is required');
}
```
### Next.js Configuration:
```typescript
// Use new format, not deprecated
const nextConfig: NextConfig = {
serverExternalPackages: ['puppeteer-core'], // NOT experimental.serverComponentsExternalPackages
transpilePackages: ['next-font'],
typescript: { ignoreBuildErrors: true },
eslint: { ignoreDuringBuilds: true }
};
```
## 📈 Enhancement Guidelines
When adding new features:
1. **Check Existing Infrastructure** - Can it be integrated vs creating new?
2. **Add Comprehensive Error Handling** - Assume functions may not exist
3. **Include Fallback Mechanisms** - System should work without AI/learning
4. **Test in Isolation** - Create test scripts for new components
5. **Document Integration Points** - How does it connect to existing systems?
6. **Maintain Consistency** - Frontend and backend must match exactly
7. **Use Defensive Programming** - Check before calling, handle gracefully
---
**Follow these patterns to maintain system stability and avoid the complex debugging issues that were resolved in this session.**

View File

@@ -0,0 +1,266 @@
# 🧠 AI Learning & Advanced System Knowledge
## 🎯 Critical System Components (Learned from Session)
### 📊 Superior Parallel Screenshot System
**BREAKTHROUGH: 60% Performance Improvement**
```javascript
// Key Implementation in lib/superior-screenshot-service.ts
- Parallel capture vs sequential: 71s vs 180s for 3 timeframes
- Trading Presets Must Match Frontend UI EXACTLY:
* Scalp: 5m,15m,30m (NOT 5m,15m,1h)
* Day: 1h,2h (NOT 1h,4h,1d)
* Swing: 4h,1D
* Extended: 1m-1D comprehensive
```
**Critical Lesson**: Frontend UI is the source of truth for preset definitions.
### 🧹 Orphaned Order Cleanup Integration
**PROBLEM SOLVED**: Drift always leaves opposite positions open after SL/TP hits
```javascript
// Integration Point: app/api/automation/position-monitor/route.js
- Triggers cleanup ONLY when hasPosition: false
- Uses existing frequent position monitoring (no redundant polling)
- Provides detailed cleanup results in monitoring response
Key Insight: Leverage existing monitoring infrastructure vs creating separate timers
```
### 🤖 AI Learning System Architecture
**CRITICAL COMPONENT**: Actual learning system that adapts trading decisions
```javascript
// lib/simplified-stop-loss-learner.js - Core Learning Functions:
1. recordDecision() - Logs every risk management choice
2. assessDecisionOutcome() - Tracks what actually happened
3. getSmartRecommendation() - AI suggestions based on learned patterns
4. generateLearningReport() - 15-minute learning progress reports
// Learning Flow:
Risk Manager -> Records Decision -> Waits 5min -> Assesses Outcome -> Updates Thresholds
```
**Key Learning**: This isn't just statistics - it actively influences trading decisions!
## 🔧 Critical Technical Fixes
### Database Schema Issues
```javascript
// ISSUE: Prisma validation errors crashed container
// FIX: Always provide unique ID for ai_learning_data records
await prisma.ai_learning_data.create({
data: {
id: `${Date.now()}-${Math.random().toString(36).substr(2, 9)}`,
// ... other fields
}
});
```
### Memory Leak Prevention
```javascript
// ISSUE: Unhandled promise rejections caused EventEmitter overflow
// FIX: Proper error handling with try/catch and function existence checks
if (typeof this.learner.generateLearningReport === 'function') {
const report = await this.learner.generateLearningReport();
}
```
### Import Path Corrections
```javascript
// ISSUE: Module not found errors
// FIX: Use correct relative paths for database utilities
const { getDB } = require('./db'); // NOT './database-util'
```
## 🎯 AI Learning System Deep Dive
### How The AI Actually Learns
1. **Pattern Recognition**:
```
"When SOL is 4% from SL with bullish momentum, holding works 73% of time"
```
2. **Threshold Optimization**:
```
Original: Emergency=1%, Risk=2%
After Learning: Emergency=0.7%, Risk=1.8% (based on outcomes)
```
3. **Smart Recommendations**:
```javascript
// AI analyzes similar historical situations
const recommendation = await learner.getSmartRecommendation({
distanceFromSL: 3.5,
symbol: 'SOL-PERP',
marketConditions: { /* current state */ }
});
// Returns: EMERGENCY_EXIT vs HOLD_CONFIDENT based on learned patterns
```
### Learning Confidence Progression
```
0-5 decisions: 30% confidence (LOW)
5-20 decisions: 40-60% confidence (MEDIUM)
20-50 decisions: 60-80% confidence (HIGH)
50+ decisions: 80-95% confidence (EXPERT)
```
## 🚨 Critical Error Patterns & Solutions
### Container Crash Root Causes
1. **Database Schema Violations** → Add unique IDs to all Prisma records
2. **Missing Function Calls** → Implement all required interfaces
3. **Memory Leaks from Unhandled Errors** → Comprehensive error handling
4. **Configuration Deprecations** → Keep configs updated with framework changes
### Next.js Common Issues
```javascript
// Issue: serverComponentsExternalPackages deprecated
// Old: experimental.serverComponentsExternalPackages
// New: serverExternalPackages
// Issue: Module resolution in Docker
// Fix: Ensure correct relative paths for all imports
```
## 💡 Development Best Practices Discovered
### 1. Integration Strategy
- **Leverage Existing Infrastructure**: Don't create redundant polling when monitoring already exists
- **Gradual Enhancement**: Add features to existing endpoints vs creating new ones
- **Fail Gracefully**: Always provide fallbacks for AI/learning features
### 2. Testing Approach
```javascript
// Always test critical components in isolation
node test-learning-system.js // Test AI learning
node test-orphaned-cleanup.js // Test cleanup integration
curl /api/automation/position-monitor // Test monitoring
```
### 3. Error Handling Philosophy
```javascript
// Defensive Programming for AI Systems
try {
const aiResult = await aiFunction();
return aiResult;
} catch (error) {
logger.error(`AI function failed: ${error.message}`);
return fallbackFunction(); // Always have a fallback
}
```
## 🎯 Performance Optimizations
### Screenshot Capture
- **Parallel Processing**: 60% time savings over sequential
- **Session Reuse**: Avoid repeated logins/captchas
- **Error Isolation**: One layout failure doesn't break others
### Database Operations
- **Batch Inserts**: For multiple learning records
- **Indexed Queries**: On frequently searched fields (symbol, createdAt)
- **Connection Pooling**: Reuse database connections
### Container Optimization
```dockerfile
# Multi-stage builds for smaller images
# Non-root user for security
# Health checks for monitoring
# Proper signal handling for graceful shutdowns
```
## 🧪 Testing Protocols
### AI Learning System
```bash
# Test learning functions
node test-learning-system.js
# Expected output:
✅ Learning report generated: 0 decisions, 30% confidence
✅ Smart recommendation: MONITOR at 3.5% distance
```
### Integration Testing
```bash
# Test orphaned cleanup integration
curl /api/automation/position-monitor | jq '.monitor.orphanedOrderCleanup'
# Test parallel screenshots
curl -X POST /api/superior-screenshot -d '{"timeframes":["5m","15m","30m"]}'
```
### System Health
```bash
# Monitor for critical errors
docker logs trader_dev --since="1m" | grep -E "(Error|unhandled|crash)"
# Should return: 0 errors
```
## 📈 Future Enhancement Opportunities
### 1. Advanced Learning Features
- **Market Condition Clustering**: Group similar market states
- **Volatility Adaptation**: Adjust thresholds based on VIX/volatility
- **Time-of-Day Learning**: Different strategies for different sessions
### 2. Performance Improvements
- **WebSocket Integration**: Real-time position monitoring
- **Caching Layer**: Redis for frequently accessed data
- **GPU Acceleration**: For complex AI computations
### 3. Risk Management Enhancements
- **Portfolio-Level Learning**: Cross-symbol pattern recognition
- **Drawdown Protection**: Automatic position sizing reduction
- **Correlation Analysis**: Avoid over-concentration
## 🔍 Debugging Guide
### Common Issues & Solutions
1. **Container Won't Start**
```bash
# Check syntax errors
find . -name "*.js" -exec node -c {} \;
# Check Docker logs
docker logs trader_dev --tail=50
```
2. **AI Learning Not Working**
```bash
# Test learning functions
node -e "
const Learner = require('./lib/simplified-stop-loss-learner');
const l = new Learner();
l.generateLearningReport().then(console.log);
"
```
3. **Database Connection Issues**
```bash
# Test database connectivity
node -e "
const { getDB } = require('./lib/db');
getDB().then(() => console.log('DB connected'));
"
```
## 🎓 Key Learnings for Future Development
1. **Always Verify Frontend-Backend Consistency**: UI defines truth
2. **Implement Comprehensive Error Handling**: Prevent cascade failures
3. **Use Existing Infrastructure**: Don't reinvent monitoring/polling
4. **Test AI Components Independently**: Isolate learning system testing
5. **Document Integration Points**: Critical for maintenance
6. **Monitor System Health**: Proactive error detection
7. **Version Control Critical Fixes**: Always commit stability improvements
---
**This knowledge base captures critical insights that took significant debugging to discover. Use it to avoid repeating complex troubleshooting and to guide future enhancements.**

View File

@@ -332,6 +332,38 @@ curl -X POST http://localhost:9001/api/automation \
4. Push to branch: `git push origin feature/amazing-feature`
5. Open a Pull Request
## 📚 Documentation & Knowledge Base
This project includes comprehensive documentation covering all aspects of the system:
### 🎯 **Core Documentation**
- **`README.md`** - Main project overview and quick start guide
- **`ADVANCED_SYSTEM_KNOWLEDGE.md`** - Critical technical insights and troubleshooting
- **`.github/copilot-instructions.md`** - Development patterns and best practices
### 🧠 **AI & Learning System**
- **Complete AI Learning Architecture** - Pattern recognition and adaptive decision making
- **Smart Recommendation Engine** - Historical outcome analysis for trading decisions
- **Learning Report Generation** - 15-minute progress reports with confidence tracking
- **Threshold Optimization** - Automatic adjustment based on trading success rates
### 🔧 **Technical Analysis Documentation**
- **`TECHNICAL_ANALYSIS_BASICS.md`** - Complete guide to all indicators used
- **`TA_QUICK_REFERENCE.md`** - Quick reference for indicator interpretation
- **AI Analysis Integration** - TA fundamentals built into AI analysis prompts
### ⚡ **Performance Optimizations**
- **Superior Parallel Screenshot System** - 60% faster than sequential (71s vs 180s)
- **Orphaned Order Cleanup Integration** - Automatic cleanup when positions close
- **Container Stability Fixes** - Resolved memory leaks and crash issues
- **Database Schema Optimizations** - Proper Prisma validation and error handling
### 🛠️ **Development Guides**
- **Integration Patterns** - How to add features without breaking existing systems
- **Error Handling Best Practices** - Defensive programming for AI systems
- **Testing Protocols** - Isolated testing for critical components
- **Debugging Strategies** - Common issues and their solutions
## <20> Technical Analysis Documentation
This project includes comprehensive Technical Analysis (TA) documentation:

View File

@@ -1,10 +1,10 @@
import { positionAwareAutomation } from '@/lib/position-aware-automation';
import { simpleAutomation } from '@/lib/simple-automation';
export async function POST() {
try {
console.log('🛑 AUTOMATION STOP: Request received');
const result = await positionAwareAutomation.stop();
const result = await simpleAutomation.stop();
// Additional cleanup
try {

View File

@@ -0,0 +1,165 @@
import { NextResponse } from 'next/server'
import { superiorScreenshotService } from '../../../lib/superior-screenshot-service'
import { aiAnalysisService } from '../../../lib/ai-analysis'
import { progressTracker } from '../../../lib/progress-tracker'
export async function POST(request) {
let sessionId = null
try {
const body = await request.json()
console.log('🔍 Enhanced Screenshot API request:', body)
const config = {
symbol: body.symbol || 'SOLUSD',
timeframe: body.timeframe || '240',
layouts: body.layouts || ['ai', 'diy'],
analyze: body.analyze === true
}
// Create session for progress tracking
sessionId = progressTracker.createSession()
config.sessionId = sessionId
console.log(`🔍 Created session ${sessionId} for enhanced screenshot`)
// Initialize progress steps
progressTracker.initializeSteps(sessionId, [
{ id: 'init', name: 'Initialize', status: 'active' },
{ id: 'auth', name: 'Authentication', status: 'pending' },
{ id: 'loading', name: 'Loading Chart', status: 'pending' },
{ id: 'capture', name: 'Capture Screenshot', status: 'pending' },
{ id: 'analysis', name: 'AI Analysis', status: 'pending' }
])
let screenshots = []
let analysis = null
// Capture screenshots using superior parallel technique
try {
console.log('🚀 Starting superior screenshot capture...')
// Use single timeframe capture for backwards compatibility
const screenshotPaths = await superiorScreenshotService.captureQuick(
config.symbol,
config.timeframe,
config.layouts
)
screenshots = screenshotPaths
console.log('📸 Superior screenshot capture completed:', screenshots.length, 'files')
} catch (screenshotError) {
console.error('❌ Superior screenshot capture failed:', screenshotError)
throw new Error(`Screenshot capture failed: ${screenshotError.message}`)
}
// Run AI analysis if requested
if (config.analyze && screenshots.length > 0) {
try {
console.log('🤖 Starting AI analysis...')
progressTracker.updateStep(sessionId, 'analysis', 'active', 'Analyzing screenshots...')
const analysisConfig = {
sessionId,
screenshots,
symbol: config.symbol,
timeframe: config.timeframe,
layouts: config.layouts
}
analysis = await aiAnalysisService.analyzeScreenshots(analysisConfig)
if (analysis) {
progressTracker.updateStep(sessionId, 'analysis', 'completed', 'Analysis completed successfully')
console.log('✅ AI analysis completed')
} else {
progressTracker.updateStep(sessionId, 'analysis', 'error', 'Analysis failed to return results')
console.warn('⚠️ AI analysis completed but returned no results')
}
} catch (analysisError) {
console.error('❌ AI analysis failed:', analysisError)
progressTracker.updateStep(sessionId, 'analysis', 'error', analysisError.message)
// Don't throw - return partial results with screenshots
analysis = { error: analysisError.message }
}
}
console.log('📸 Final screenshots:', screenshots)
const result = {
success: true,
sessionId,
timestamp: Date.now(),
symbol: config.symbol,
layouts: config.layouts,
timeframes: [config.timeframe],
screenshots,
analysis,
message: `Successfully captured ${screenshots.length} screenshot(s)${config.analyze ? ' with AI analysis' : ''}`
}
console.log('✅ Enhanced screenshot API completed successfully')
return NextResponse.json(result)
} catch (error) {
console.error('❌ Enhanced screenshot API error:', error)
if (sessionId) {
// Mark any active step as error
const progress = progressTracker.getProgress(sessionId)
if (progress) {
const activeStep = progress.steps.find(step => step.status === 'active')
if (activeStep) {
progressTracker.updateStep(sessionId, activeStep.id, 'error', error.message)
}
}
}
return NextResponse.json({
success: false,
error: error.message,
timestamp: Date.now(),
sessionId
}, { status: 500 })
} finally {
// CRITICAL: Always run cleanup in finally block
console.log('🧹 FINALLY BLOCK: Running superior screenshot service cleanup...')
try {
// Force cleanup all browser sessions (API-managed, no action needed)
await superiorScreenshotService.cleanup()
console.log('✅ FINALLY BLOCK: Superior screenshot service cleanup completed')
// Also run aggressive cleanup to ensure no processes remain
const { automatedCleanupService } = await import('../../../lib/automated-cleanup-service')
await automatedCleanupService.forceCleanup()
console.log('✅ FINALLY BLOCK: Automated cleanup completed')
} catch (cleanupError) {
console.error('❌ FINALLY BLOCK: Error during cleanup:', cleanupError)
}
// Clean up progress session after delay to allow frontend to read final state
if (sessionId) {
setTimeout(() => {
try {
progressTracker.deleteSession(sessionId)
console.log(`🗑️ Cleaned up session ${sessionId}`)
} catch (sessionCleanupError) {
console.error('Error cleaning up session:', sessionCleanupError)
}
}, 30000) // 30 second delay
}
}
}
export async function GET() {
return NextResponse.json({
message: 'Enhanced Screenshot API - use POST method for analysis',
endpoints: {
POST: '/api/enhanced-screenshot - Run analysis with parameters'
}
})
}

View File

@@ -0,0 +1,444 @@
'use client'
import React, { useState, useEffect } from 'react'
// Available timeframes for automation (matching analysis page format)
const timeframes = [
{ label: '5m', value: '5' },
{ label: '15m', value: '15' },
{ label: '30m', value: '30' },
{ label: '1h', value: '60' },
{ label: '2h', value: '120' },
{ label: '4h', value: '240' },
{ label: '1d', value: 'D' },
]
export default function AutomationPageV2() {
const [config, setConfig] = useState({
mode: 'SIMULATION',
dexProvider: 'DRIFT',
symbol: 'SOLUSD',
selectedTimeframes: ['60'], // Multi-timeframe support
tradingAmount: 100,
balancePercentage: 50, // Default to 50% of available balance
})
const [status, setStatus] = useState(null)
const [balance, setBalance] = useState(null)
const [positions, setPositions] = useState([])
const [loading, setLoading] = useState(false)
useEffect(() => {
fetchStatus()
fetchBalance()
fetchPositions()
const interval = setInterval(() => {
fetchStatus()
fetchBalance()
fetchPositions()
}, 30000)
return () => clearInterval(interval)
}, [])
const toggleTimeframe = (timeframe) => {
setConfig(prev => ({
...prev,
selectedTimeframes: prev.selectedTimeframes.includes(timeframe)
? prev.selectedTimeframes.filter(tf => tf !== timeframe)
: [...prev.selectedTimeframes, timeframe]
}))
}
const fetchStatus = async () => {
try {
const response = await fetch('/api/automation/status')
const data = await response.json()
if (data.success) {
setStatus(data.status)
}
} catch (error) {
console.error('Failed to fetch status:', error)
}
}
const fetchBalance = async () => {
try {
const response = await fetch('/api/drift/balance')
const data = await response.json()
if (data.success) {
setBalance(data)
}
} catch (error) {
console.error('Failed to fetch balance:', error)
}
}
const fetchPositions = async () => {
try {
const response = await fetch('/api/drift/positions')
const data = await response.json()
if (data.success) {
setPositions(data.positions || [])
}
} catch (error) {
console.error('Failed to fetch positions:', error)
}
}
const handleStart = async () => {
console.log('🚀 Starting automation...')
setLoading(true)
try {
if (config.selectedTimeframes.length === 0) {
console.error('No timeframes selected')
setLoading(false)
return
}
const automationConfig = {
symbol: config.symbol,
selectedTimeframes: config.selectedTimeframes,
mode: config.mode,
tradingAmount: config.tradingAmount,
leverage: config.leverage,
stopLoss: config.stopLoss,
takeProfit: config.takeProfit
}
const response = await fetch('/api/automation/start', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(automationConfig)
})
const data = await response.json()
if (data.success) {
console.log('✅ Automation started successfully')
fetchStatus()
} else {
console.error('Failed to start automation:', data.error)
}
} catch (error) {
console.error('Failed to start automation:', error)
} finally {
setLoading(false)
}
}
const handleStop = async () => {
console.log('🛑 Stopping automation...')
setLoading(true)
try {
const response = await fetch('/api/automation/stop', {
method: 'POST',
headers: { 'Content-Type': 'application/json' }
})
const data = await response.json()
if (data.success) {
console.log('✅ Automation stopped successfully')
fetchStatus()
} else {
console.error('Failed to stop automation:', data.error)
}
} catch (error) {
console.error('Failed to stop automation:', error)
} finally {
setLoading(false)
}
}
return (
<div className="space-y-6">
{/* Header with Start/Stop */}
<div className="flex items-center justify-between">
<div>
<h1 className="text-3xl font-bold text-white">Automated Trading</h1>
<p className="text-gray-400 mt-1">Multi-Timeframe Analysis</p>
</div>
<div className="flex space-x-3">
{status?.isActive ? (
<button
onClick={handleStop}
disabled={loading}
className="px-6 py-3 bg-red-600 text-white rounded-lg hover:bg-red-700 transition-colors disabled:opacity-50 font-semibold"
>
{loading ? 'Stopping...' : 'STOP'}
</button>
) : (
<button
onClick={handleStart}
disabled={loading}
className="px-6 py-3 bg-green-600 text-white rounded-lg hover:bg-green-700 transition-colors disabled:opacity-50 font-semibold"
>
{loading ? 'Starting...' : 'START'}
</button>
)}
</div>
</div>
<div className="grid grid-cols-1 xl:grid-cols-3 gap-6">
{/* Configuration Panel */}
<div className="xl:col-span-2 space-y-6">
<div className="bg-gray-800 p-6 rounded-lg border border-gray-700">
<h3 className="text-xl font-bold text-white mb-6">Configuration</h3>
{/* Trading Mode */}
<div className="grid grid-cols-1 md:grid-cols-2 gap-6 mb-6">
<div className="space-y-3">
<label className="block text-sm font-bold text-blue-400">Trading Mode</label>
<div className="space-y-2">
<label className="flex items-center space-x-3 cursor-pointer p-3 rounded-lg border border-gray-600 hover:border-blue-500 transition-colors">
<input
type="radio"
className="w-4 h-4 text-blue-600"
name="mode"
checked={config.mode === 'SIMULATION'}
onChange={() => setConfig({...config, mode: 'SIMULATION'})}
disabled={status?.isActive}
/>
<span className="text-white">Paper Trading</span>
</label>
<label className="flex items-center space-x-3 cursor-pointer p-3 rounded-lg border border-gray-600 hover:border-green-500 transition-colors">
<input
type="radio"
className="w-4 h-4 text-green-600"
name="mode"
checked={config.mode === 'LIVE'}
onChange={() => setConfig({...config, mode: 'LIVE'})}
disabled={status?.isActive}
/>
<span className="text-white font-semibold">Live Trading</span>
</label>
</div>
</div>
</div>
{/* Symbol and Position Size */}
<div className="grid grid-cols-1 md:grid-cols-2 gap-4 mb-6">
<div>
<label className="block text-sm font-medium text-gray-300 mb-2">Symbol</label>
<select
className="w-full p-3 bg-gray-700 border border-gray-600 rounded-lg text-white focus:border-blue-500"
value={config.symbol}
onChange={(e) => setConfig({...config, symbol: e.target.value})}
disabled={status?.isActive}
>
<option value="SOLUSD">SOL/USD</option>
<option value="BTCUSD">BTC/USD</option>
<option value="ETHUSD">ETH/USD</option>
<option value="APTUSD">APT/USD</option>
<option value="AVAXUSD">AVAX/USD</option>
<option value="DOGEUSD">DOGE/USD</option>
</select>
</div>
<div>
<label className="block text-sm font-medium text-gray-300 mb-2">
Balance to Use: {config.balancePercentage}%
{balance && ` ($${(parseFloat(balance.availableBalance) * config.balancePercentage / 100).toFixed(2)})`}
</label>
<input
type="range"
className="w-full h-2 bg-gray-700 rounded-lg appearance-none cursor-pointer"
style={{
background: `linear-gradient(to right, #3b82f6 0%, #3b82f6 ${config.balancePercentage}%, #374151 ${config.balancePercentage}%, #374151 100%)`
}}
min="10"
max="100"
step="5"
value={config.balancePercentage}
onChange={(e) => {
const percentage = parseFloat(e.target.value);
const newAmount = balance ? (parseFloat(balance.availableBalance) * percentage / 100) : 100;
setConfig({
...config,
balancePercentage: percentage,
tradingAmount: Math.round(newAmount)
});
}}
disabled={status?.isActive}
/>
<div className="flex justify-between text-xs text-gray-400 mt-1">
<span>10%</span>
<span>50%</span>
<span>100%</span>
</div>
</div>
</div>
{/* MULTI-TIMEFRAME SELECTION */}
<div className="mb-6">
<label className="block text-sm font-medium text-gray-300 mb-2">
Analysis Timeframes
<span className="text-xs text-cyan-400 ml-2">({config.selectedTimeframes.length} selected)</span>
{config.selectedTimeframes.length === 0 && (
<span className="text-xs text-red-400 ml-2"> At least one timeframe required</span>
)}
</label>
{/* Timeframe Checkboxes */}
<div className="grid grid-cols-4 gap-2 mb-3">
{timeframes.map(tf => (
<label key={tf.value} className="group relative cursor-pointer">
<input
type="checkbox"
checked={config.selectedTimeframes.includes(tf.value)}
onChange={() => toggleTimeframe(tf.value)}
disabled={status?.isActive}
className="sr-only"
/>
<div className={`flex items-center justify-center p-2 rounded-lg border transition-all text-xs font-medium ${
config.selectedTimeframes.includes(tf.value)
? 'border-cyan-500 bg-cyan-500/10 text-cyan-300 shadow-lg shadow-cyan-500/20'
: status?.isActive
? 'border-gray-700 bg-gray-800/30 text-gray-500 cursor-not-allowed'
: 'border-gray-700 bg-gray-800/30 text-gray-400 hover:border-gray-600 hover:bg-gray-800/50 hover:text-gray-300'
}`}>
{tf.label}
{config.selectedTimeframes.includes(tf.value) && (
<div className="absolute top-0.5 right-0.5 w-1.5 h-1.5 bg-cyan-400 rounded-full"></div>
)}
</div>
</label>
))}
</div>
{/* Selected Timeframes Display */}
{config.selectedTimeframes.length > 0 && (
<div className="p-2 bg-gray-800/30 rounded-lg mb-3">
<div className="text-xs text-gray-400">
Selected: <span className="text-cyan-400">
{config.selectedTimeframes.map(tf => timeframes.find(t => t.value === tf)?.label || tf).filter(Boolean).join(', ')}
</span>
</div>
<div className="text-xs text-gray-500 mt-1">
💡 Multiple timeframes provide more robust analysis
</div>
</div>
)}
{/* Quick Selection Buttons */}
<div className="flex gap-2">
<button
type="button"
onClick={() => setConfig({...config, selectedTimeframes: ['5', '15', '30']})}
disabled={status?.isActive}
className="py-1 px-2 rounded text-xs font-medium bg-green-600/20 text-green-300 hover:bg-green-600/30 transition-all disabled:opacity-50 disabled:cursor-not-allowed"
>
📈 Scalping
</button>
<button
type="button"
onClick={() => setConfig({...config, selectedTimeframes: ['60', '120']})}
disabled={status?.isActive}
className="py-1 px-2 rounded text-xs font-medium bg-blue-600/20 text-blue-300 hover:bg-blue-600/30 transition-all disabled:opacity-50 disabled:cursor-not-allowed"
>
Day Trading
</button>
<button
type="button"
onClick={() => setConfig({...config, selectedTimeframes: ['240', 'D']})}
disabled={status?.isActive}
className="py-1 px-2 rounded text-xs font-medium bg-purple-600/20 text-purple-300 hover:bg-purple-600/30 transition-all disabled:opacity-50 disabled:cursor-not-allowed"
>
🎯 Swing Trading
</button>
</div>
</div>
</div>
</div>
{/* Status and Info Panel */}
<div className="space-y-6">
{/* Status */}
<div className="bg-gray-800 p-6 rounded-lg border border-gray-700">
<h3 className="text-lg font-bold text-white mb-4">Bot Status</h3>
<div className="space-y-3">
<div className="flex justify-between items-center">
<span className="text-gray-400">Status:</span>
<span className={`px-2 py-1 rounded text-xs font-semibold ${
status?.isActive ? 'bg-green-600 text-white' : 'bg-gray-600 text-gray-300'
}`}>
{status?.isActive ? 'RUNNING' : 'STOPPED'}
</span>
</div>
{status?.isActive && (
<>
<div className="flex justify-between items-center">
<span className="text-gray-400">Symbol:</span>
<span className="text-white font-medium">{status.symbol}</span>
</div>
<div className="flex justify-between items-center">
<span className="text-gray-400">Mode:</span>
<span className={`px-2 py-1 rounded text-xs font-semibold ${
status.mode === 'LIVE' ? 'bg-red-600 text-white' : 'bg-blue-600 text-white'
}`}>
{status.mode}
</span>
</div>
<div className="flex justify-between items-center">
<span className="text-gray-400">Timeframes:</span>
<span className="text-cyan-400 text-xs">
{status.timeframes?.map(tf => timeframes.find(t => t.value === tf)?.label || tf).join(', ')}
</span>
</div>
</>
)}
</div>
</div>
{/* Balance */}
{balance && (
<div className="bg-gray-800 p-6 rounded-lg border border-gray-700">
<h3 className="text-lg font-bold text-white mb-4">Account Balance</h3>
<div className="space-y-3">
<div className="flex justify-between items-center">
<span className="text-gray-400">Available:</span>
<span className="text-green-400 font-semibold">${balance.availableBalance}</span>
</div>
<div className="flex justify-between items-center">
<span className="text-gray-400">Total:</span>
<span className="text-white font-medium">${balance.totalCollateral}</span>
</div>
<div className="flex justify-between items-center">
<span className="text-gray-400">Positions:</span>
<span className="text-yellow-400">{balance.positions || 0}</span>
</div>
</div>
</div>
)}
{/* Positions */}
{positions.length > 0 && (
<div className="bg-gray-800 p-6 rounded-lg border border-gray-700">
<h3 className="text-lg font-bold text-white mb-4">Open Positions</h3>
<div className="space-y-2">
{positions.map((position, index) => (
<div key={index} className="flex justify-between items-center p-2 bg-gray-700 rounded">
<span className="text-white">{position.symbol}</span>
<span className={`font-semibold ${
position.side === 'LONG' ? 'text-green-400' : 'text-red-400'
}`}>
{position.side} ${position.size}
</span>
</div>
))}
</div>
</div>
)}
</div>
</div>
</div>
)
}

View File

@@ -1,6 +1,5 @@
'use client'
import React, { useState, useEffect } from 'react'
import PositionMonitor from '../components/PositionMonitor.tsx'
// Available timeframes for automation (matching analysis page format)
const timeframes = [
@@ -156,10 +155,7 @@ export default function AutomationPageV2() {
}
return (
<div className="space-y-8">
{/* Position Monitor - Real-time Trading Overview */}
<PositionMonitor />
<div className="space-y-6">
<div className="grid grid-cols-1 xl:grid-cols-3 gap-6">
{/* Configuration Panel */}
<div className="xl:col-span-2 space-y-6">
@@ -168,16 +164,6 @@ export default function AutomationPageV2() {
<div className="flex items-center justify-between mb-6">
<h3 className="text-xl font-bold text-white">Configuration</h3>
<div className="flex space-x-3">
{/* Emergency Stop Button - Always Available */}
<button
onClick={handleStop}
disabled={loading}
className="px-4 py-2 bg-orange-600 text-white rounded-lg hover:bg-orange-700 transition-colors disabled:opacity-50 font-semibold text-sm border-2 border-orange-500"
title="Emergency Stop - Immediately stops all automation"
>
🚨 EMERGENCY STOP
</button>
{status?.isActive ? (
<button
onClick={handleStop}

View File

@@ -106,13 +106,10 @@ export default function PositionMonitor() {
return (
<div className="space-y-6">
{/* Header */}
<div className="bg-gray-800 rounded-lg p-4 border border-gray-700">
<div className="bg-gray-50 rounded-lg p-4">
<div className="flex justify-between items-center">
<h2 className="text-lg font-semibold text-white flex items-center">
<span className="mr-2">🔍</span>
Position Monitor
</h2>
<span className="text-sm text-gray-400">
<h2 className="text-lg font-semibold text-gray-800">🔍 Position Monitor</h2>
<span className="text-sm text-gray-500">
Last update: {lastUpdate.toLocaleTimeString()}
</span>
</div>
@@ -120,167 +117,139 @@ export default function PositionMonitor() {
{/* Position Status */}
{monitorData?.hasPosition && monitorData.position ? (
<div className="bg-gray-800 border border-gray-700 rounded-lg p-6">
<h3 className="text-lg font-medium text-white mb-4 flex items-center">
<span className="mr-2">📊</span>
Active Position
</h3>
<div className="bg-white border rounded-lg p-6">
<h3 className="text-lg font-medium text-gray-900 mb-4">📊 Active Position</h3>
<div className="grid grid-cols-2 md:grid-cols-3 gap-4">
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Symbol & Side</p>
<p className="font-medium text-white">{monitorData.position.symbol}</p>
<p className={`text-sm font-semibold ${monitorData.position.side === 'short' ? 'text-red-400' : 'text-green-400'}`}>
{monitorData.position.side.toUpperCase()}
</p>
<div>
<p className="text-sm text-gray-500">Symbol & Side</p>
<p className="font-medium">{monitorData.position.symbol} | {monitorData.position.side.toUpperCase()}</p>
</div>
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Size</p>
<p className="font-medium text-white">{monitorData.position.size} SOL</p>
<div>
<p className="text-sm text-gray-500">Size</p>
<p className="font-medium">{monitorData.position.size} SOL</p>
</div>
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Entry Price</p>
<p className="font-medium text-white">${monitorData.position.entryPrice.toFixed(4)}</p>
<div>
<p className="text-sm text-gray-500">Entry Price</p>
<p className="font-medium">${monitorData.position.entryPrice.toFixed(4)}</p>
</div>
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Current Price</p>
<p className="font-medium text-white">${monitorData.position.currentPrice.toFixed(4)}</p>
<div>
<p className="text-sm text-gray-500">Current Price</p>
<p className="font-medium">${monitorData.position.currentPrice.toFixed(4)}</p>
</div>
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">P&L</p>
<p className={`font-medium ${monitorData.position.unrealizedPnl >= 0 ? 'text-green-400' : 'text-red-400'}`}>
<div>
<p className="text-sm text-gray-500">P&L</p>
<p className={`font-medium ${monitorData.position.unrealizedPnl >= 0 ? 'text-green-600' : 'text-red-600'}`}>
{monitorData.position.unrealizedPnl >= 0 ? '+' : ''}${monitorData.position.unrealizedPnl.toFixed(2)}
</p>
</div>
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Notional Value</p>
<p className="font-medium text-white">${monitorData.position.notionalValue.toFixed(2)}</p>
<div>
<p className="text-sm text-gray-500">Notional Value</p>
<p className="font-medium">${monitorData.position.notionalValue.toFixed(2)}</p>
</div>
</div>
{/* Stop Loss Section */}
{monitorData.stopLossProximity && (
<div className="mt-6 p-4 bg-gray-900/30 rounded-lg border border-gray-600">
<h4 className="font-medium text-white mb-3 flex items-center">
<span className="mr-2">🤖</span>
AI Autonomous Risk Management
</h4>
<div className="mt-6 p-4 bg-gray-50 rounded-lg">
<h4 className="font-medium text-gray-900 mb-3">🛡 Stop Loss Protection</h4>
<div className="grid grid-cols-1 md:grid-cols-3 gap-4">
<div className="bg-gray-800/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Stop Loss Price</p>
<p className="font-medium text-white">${monitorData.stopLossProximity.stopLossPrice.toFixed(4)}</p>
<div>
<p className="text-sm text-gray-500">Stop Loss Price</p>
<p className="font-medium">${monitorData.stopLossProximity.stopLossPrice.toFixed(4)}</p>
</div>
<div className="bg-gray-800/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Distance</p>
<p className="font-medium text-white">{monitorData.stopLossProximity.distancePercent}% away</p>
<div>
<p className="text-sm text-gray-500">Distance</p>
<p className="font-medium">{monitorData.stopLossProximity.distancePercent}% away</p>
</div>
<div className="bg-gray-800/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">AI Status</p>
<div>
<p className="text-sm text-gray-500">Status</p>
{(() => {
const status = getStopLossStatus(monitorData.stopLossProximity.distancePercent);
const aiActions: Record<string, { text: string; color: string }> = {
'DANGER': { text: '🚨 Emergency Analysis', color: 'text-red-400' },
'WARNING': { text: '⚠️ Position Review', color: 'text-yellow-400' },
'CAUTION': { text: '🟡 Enhanced Watch', color: 'text-yellow-400' },
'SAFE': { text: '✅ Opportunity Scan', color: 'text-green-400' }
};
const aiAction = aiActions[status.text] || aiActions['SAFE'];
return (
<p className={`font-medium ${aiAction.color}`}>
{aiAction.text}
<p className={`font-medium ${status.color}`}>
{status.icon} {status.text}
</p>
);
})()}
</div>
</div>
<div className="mt-3 bg-gray-800/30 p-3 rounded-lg">
<p className="text-sm text-gray-400">AI Action Plan</p>
<p className="font-medium text-blue-400">
{monitorData.nextAction || 'AI monitoring position autonomously'}
<div className="mt-3">
<p className="text-sm text-gray-500">Risk Level</p>
<p className={`font-medium ${getRiskColor(monitorData.riskLevel)}`}>
{monitorData.riskLevel}
</p>
</div>
{monitorData.stopLossProximity.isNear && (
<div className="mt-4 p-3 bg-blue-900/30 border border-blue-500/30 rounded-lg">
<p className="text-blue-300 font-medium">🤖 AI TAKING ACTION: Autonomous risk management activated!</p>
<p className="text-blue-400 text-sm mt-1">No manual intervention required - enjoy your beach time! 🏖</p>
<div className="mt-4 p-3 bg-red-100 border border-red-300 rounded-lg">
<p className="text-red-700 font-medium">🚨 ALERT: Price is near stop loss!</p>
</div>
)}
</div>
)}
</div>
) : (
<div className="bg-gray-800 border border-gray-700 rounded-lg p-6">
<div className="bg-white border rounded-lg p-6">
<div className="text-center py-8">
<p className="text-gray-400 text-lg flex items-center justify-center">
<span className="mr-2">📊</span>
No Open Positions
</p>
<p className="text-gray-500 mt-2">Scanning for opportunities...</p>
<p className="text-gray-500 text-lg">📊 No Open Positions</p>
<p className="text-gray-400 mt-2">Scanning for opportunities...</p>
</div>
</div>
)}
{/* Automation Status */}
<div className="bg-gray-800 border border-gray-700 rounded-lg p-6">
<h3 className="text-lg font-medium text-white mb-4 flex items-center">
<span className="mr-2">🤖</span>
Automation Status
</h3>
<div className="bg-white border rounded-lg p-6">
<h3 className="text-lg font-medium text-gray-900 mb-4">🤖 Automation Status</h3>
{automationStatus?.isActive ? (
<div className="space-y-4">
<div className="grid grid-cols-2 md:grid-cols-4 gap-4">
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Status</p>
<p className="font-medium text-green-400 flex items-center">
<span className="w-2 h-2 bg-green-400 rounded-full mr-2"></span>
ACTIVE
</p>
<div>
<p className="text-sm text-gray-500">Status</p>
<p className="font-medium text-green-600"> ACTIVE</p>
</div>
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Mode</p>
<p className={`font-medium ${automationStatus.mode === 'LIVE' ? 'text-red-400' : 'text-blue-400'}`}>
{automationStatus.mode}
</p>
<div>
<p className="text-sm text-gray-500">Mode</p>
<p className="font-medium">{automationStatus.mode}</p>
</div>
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Strategy</p>
<p className="font-medium text-white">Scalping</p>
<div>
<p className="text-sm text-gray-500">Strategy</p>
<p className="font-medium">Scalping</p>
</div>
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Symbol</p>
<p className="font-medium text-white">{automationStatus.symbol}</p>
<div>
<p className="text-sm text-gray-500">Symbol</p>
<p className="font-medium">{automationStatus.symbol}</p>
</div>
</div>
<div className="grid grid-cols-2 md:grid-cols-4 gap-4">
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Timeframes</p>
<p className="font-medium text-cyan-400">{automationStatus.timeframes?.join(', ') || 'N/A'}</p>
<div>
<p className="text-sm text-gray-500">Timeframes</p>
<p className="font-medium">{automationStatus.timeframes?.join(', ') || 'N/A'}</p>
</div>
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Cycles</p>
<p className="font-medium text-white">{automationStatus.totalCycles}</p>
<div>
<p className="text-sm text-gray-500">Cycles</p>
<p className="font-medium">{automationStatus.totalCycles}</p>
</div>
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Trades</p>
<p className="font-medium text-white">{automationStatus.totalTrades}</p>
<div>
<p className="text-sm text-gray-500">Trades</p>
<p className="font-medium">{automationStatus.totalTrades}</p>
</div>
<div className="bg-gray-900/50 p-3 rounded-lg">
<p className="text-sm text-gray-400">Errors</p>
<p className={`font-medium ${automationStatus.consecutiveErrors > 0 ? 'text-yellow-400' : 'text-green-400'}`}>
<div>
<p className="text-sm text-gray-500">Errors</p>
<p className={`font-medium ${automationStatus.consecutiveErrors > 0 ? 'text-yellow-600' : 'text-green-600'}`}>
{automationStatus.consecutiveErrors}/3
</p>
</div>
</div>
{automationStatus.lastActivity && (
<div className="bg-gray-900/30 p-3 rounded-lg">
<p className="text-sm text-gray-400">Last Activity</p>
<p className="font-medium text-white">
<div>
<p className="text-sm text-gray-500">Last Activity</p>
<p className="font-medium">
{new Date(automationStatus.lastActivity).toLocaleString()}
</p>
</div>
@@ -288,10 +257,7 @@ export default function PositionMonitor() {
</div>
) : (
<div className="text-center py-4">
<p className="text-red-400 font-medium flex items-center justify-center">
<span className="w-2 h-2 bg-red-400 rounded-full mr-2"></span>
STOPPED
</p>
<p className="text-red-600 font-medium"> STOPPED</p>
<p className="text-gray-500 mt-2">{automationStatus?.detailedStatus}</p>
</div>
)}

View File

@@ -0,0 +1,326 @@
class SafeParallelAutomation {
private isRunning = false
private config: any = null
private intervalId: NodeJS.Timeout | null = null
private lastAnalysisTime = 0
// SAFE PARAMETERS - Respect timeframe strategy
private readonly MIN_ANALYSIS_INTERVAL = 10 * 60 * 1000 // 10 minutes minimum
private readonly MAX_TRADES_PER_HOUR = 2
private readonly ANALYSIS_COOLDOWN = 5 * 60 * 1000 // 5 minutes
private stats = {
totalTrades: 0,
successfulTrades: 0,
winRate: 0,
totalPnL: 0,
errorCount: 0,
lastAnalysis: null as string | null,
nextScheduled: null as string | null,
nextAnalysisIn: 0,
analysisInterval: 0,
currentCycle: 0,
lastError: null as string | null,
strategyType: 'General'
}
async startSafeAutomation(config: any): Promise<{ success: boolean, message?: string }> {
try {
if (this.isRunning) {
return { success: false, message: 'Safe automation already running' }
}
// SAFETY CHECK: Rate limiting
const now = Date.now()
if (now - this.lastAnalysisTime < this.ANALYSIS_COOLDOWN) {
const remaining = Math.ceil((this.ANALYSIS_COOLDOWN - (now - this.lastAnalysisTime)) / 1000)
return {
success: false,
message: 'Safety cooldown: Wait ' + remaining + ' seconds'
}
}
// SAFETY CHECK: Validate timeframes
if (!config.timeframes || config.timeframes.length === 0) {
return { success: false, message: 'At least one timeframe required' }
}
this.config = config
this.isRunning = true
this.lastAnalysisTime = now
this.stats.currentCycle = 0
this.stats.strategyType = config.strategyType || 'General'
console.log('SAFE PARALLEL: Starting for ' + config.symbol)
console.log('STRATEGY: ' + this.stats.strategyType)
console.log('TIMEFRAMES: [' + config.timeframes.join(', ') + ']')
console.log('SAFETY: Max ' + this.MAX_TRADES_PER_HOUR + ' trades/hour')
// Start with strategy-appropriate interval
this.startSafeAnalysisCycle()
return { success: true, message: 'Safe parallel automation started' }
} catch (error) {
console.error('Failed to start safe automation:', error)
return { success: false, message: 'Failed to start automation' }
}
}
private startSafeAnalysisCycle(): void {
// Get strategy-appropriate interval but enforce minimum safety
const strategyInterval = this.getStrategyInterval(this.config.timeframes, this.config.strategyType)
const safeInterval = Math.max(this.MIN_ANALYSIS_INTERVAL, strategyInterval)
console.log('STRATEGY INTERVAL: ' + (strategyInterval / 1000 / 60) + ' minutes')
console.log('SAFE INTERVAL: ' + (safeInterval / 1000 / 60) + ' minutes (enforced minimum)')
this.stats.analysisInterval = safeInterval
this.stats.nextScheduled = new Date(Date.now() + safeInterval).toISOString()
this.stats.nextAnalysisIn = safeInterval
// Set safe interval
this.intervalId = setInterval(async () => {
if (this.isRunning && this.config) {
await this.runSafeAnalysisCycle()
}
}, safeInterval)
// First cycle after delay
setTimeout(() => {
if (this.isRunning && this.config) {
this.runSafeAnalysisCycle()
}
}, 30000)
}
private async runSafeAnalysisCycle(): Promise<void> {
try {
console.log('\nSAFE CYCLE ' + (this.stats.currentCycle + 1) + ': ' + this.config.symbol)
console.log('STRATEGY: ' + this.stats.strategyType)
// SAFETY CHECK
const canTrade = await this.canExecuteTrade()
if (!canTrade.allowed) {
console.log('SAFETY BLOCK: ' + canTrade.reason)
this.updateNextAnalysisTime()
return
}
// PARALLEL ANALYSIS using enhanced screenshot API
console.log('PARALLEL: Analyzing ' + this.config.timeframes.length + ' timeframes...')
const analysisResult = await this.performParallelAnalysis()
if (!analysisResult || !analysisResult.analysis) {
console.log('Analysis failed, skipping')
return
}
this.stats.lastAnalysis = new Date().toISOString()
console.log('ANALYSIS: ' + analysisResult.analysis.recommendation)
// CONTROLLED TRADING with strategy-specific logic
if (this.shouldExecuteTrade(analysisResult.analysis)) {
console.log('EXECUTING: Trade criteria met for ' + this.stats.strategyType)
const tradeResult = await this.executeSafeTrade(analysisResult.analysis)
if (tradeResult?.success) {
this.stats.totalTrades++
this.stats.successfulTrades++
this.stats.winRate = (this.stats.successfulTrades / this.stats.totalTrades) * 100
console.log('TRADE: Executed successfully')
}
} else {
console.log('SIGNAL: Criteria not met for ' + this.stats.strategyType)
}
this.stats.currentCycle++
} catch (error) {
console.error('Error in safe cycle:', error)
this.stats.errorCount++
this.stats.lastError = error instanceof Error ? error.message : 'Unknown error'
} finally {
await this.guaranteedCleanup()
this.updateNextAnalysisTime()
}
}
private async performParallelAnalysis(): Promise<any> {
try {
// Use the enhanced screenshot API endpoint with all selected timeframes
const response = await fetch('http://localhost:3000/api/enhanced-screenshot', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
symbol: this.config.symbol,
timeframes: this.config.timeframes,
layouts: ['ai', 'diy'],
analyze: true
})
})
throw new Error('API response: ' + response.status)
}
const result = await response.json()
if (result.analysis) {
console.log('PARALLEL: Confidence ' + result.analysis.confidence + '%')
return result
}
return null
} catch (error) {
console.error('Error in parallel analysis:', error)
throw error
}
}
private shouldExecuteTrade(analysis: any): boolean {
const recommendation = analysis.recommendation.toLowerCase()
const confidence = analysis.confidence || 0
// Strategy-specific confidence requirements
let minConfidence = 75 // Default
if (this.stats.strategyType === 'Scalping') {
minConfidence = 80 // Higher confidence for scalping
} else if (this.stats.strategyType === 'Day Trading') {
minConfidence = 75 // Standard confidence
} else if (this.stats.strategyType === 'Swing Trading') {
minConfidence = 70 // Slightly lower for swing (longer timeframes)
}
const isHighConfidence = confidence >= minConfidence
const isClearDirection = recommendation.includes('buy') || recommendation.includes('sell')
console.log('SIGNAL: ' + recommendation + ' (' + confidence + '%) - Required: ' + minConfidence + '%')
return isHighConfidence && isClearDirection
}
private getStrategyInterval(timeframes: string[], strategyType: string): number {
// Strategy-based intervals (but minimum will be enforced)
if (strategyType === 'Scalping') {
console.log('SCALPING: Using 2-minute analysis cycle')
return 2 * 60 * 1000 // 2 minutes for scalping (will be enforced to 10 min minimum)
}
if (strategyType === 'Day Trading') {
console.log('DAY TRADING: Using 5-minute analysis cycle')
return 5 * 60 * 1000 // 5 minutes for day trading (will be enforced to 10 min minimum)
}
if (strategyType === 'Swing Trading') {
console.log('SWING TRADING: Using 15-minute analysis cycle')
return 15 * 60 * 1000 // 15 minutes for swing trading
}
// Fallback based on shortest timeframe
const shortest = Math.min(...timeframes.map(tf => {
if (tf === 'D') return 1440
return parseInt(tf) || 60
}))
if (shortest <= 5) return 2 * 60 * 1000 // 2 min for very short
if (shortest <= 15) return 5 * 60 * 1000 // 5 min for short
if (shortest <= 60) return 10 * 60 * 1000 // 10 min for medium
return 15 * 60 * 1000 // 15 min for long
}
private async executeSafeTrade(analysis: any): Promise<any> {
try {
console.log('SAFE TRADE: Executing...')
// Use drift trading API endpoint
const response = await fetch('http://localhost:3000/api/trading', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
mode: this.config.mode,
symbol: this.config.symbol,
amount: this.config.tradingAmount,
leverage: this.config.leverage,
stopLoss: this.config.stopLoss,
takeProfit: this.config.takeProfit,
analysis: analysis,
strategy: this.stats.strategyType
})
})
const result = await response.json()
return result
} catch (error) {
console.error('Error executing trade:', error)
return { success: false, error: error.message }
}
}
private async canExecuteTrade(): Promise<{ allowed: boolean, reason?: string }> {
const now = Date.now()
if (now - this.lastAnalysisTime < this.ANALYSIS_COOLDOWN) {
const remaining = Math.ceil((this.ANALYSIS_COOLDOWN - (now - this.lastAnalysisTime)) / 1000 / 60)
return { allowed: false, reason: 'Cooldown: ' + remaining + 'min' }
}
if (this.stats.totalTrades >= this.MAX_TRADES_PER_HOUR) {
return { allowed: false, reason: 'Hour limit: ' + this.stats.totalTrades + '/' + this.MAX_TRADES_PER_HOUR }
}
return { allowed: true }
}
private async guaranteedCleanup(): Promise<void> {
try {
const { execSync } = require('child_process')
execSync('pkill -f "chrome|chromium" 2>/dev/null || true')
console.log('CLEANUP: Completed')
} catch (error) {
console.error('CLEANUP: Failed', error)
}
}
private updateNextAnalysisTime(): void {
const nextTime = Date.now() + this.stats.analysisInterval
this.stats.nextScheduled = new Date(nextTime).toISOString()
this.stats.nextAnalysisIn = this.stats.analysisInterval
}
async stopSafeAutomation(): Promise<{ success: boolean, message?: string }> {
try {
this.isRunning = false
if (this.intervalId) {
clearInterval(this.intervalId)
this.intervalId = null
}
await this.guaranteedCleanup()
this.config = null
this.stats.nextAnalysisIn = 0
this.stats.nextScheduled = null
console.log('SAFE: Automation stopped')
return { success: true, message: 'Safe automation stopped' }
} catch (error) {
return { success: false, message: 'Stop failed' }
}
}
getStatus() {
return {
isActive: this.isRunning,
mode: this.config?.mode || 'SIMULATION',
symbol: this.config?.symbol || 'SOLUSD',
timeframes: this.config?.timeframes || ['1h'],
automationType: 'SAFE_PARALLEL',
strategy: this.stats.strategyType,
...this.stats
}
}
}
export const safeParallelAutomation = new SafeParallelAutomation()

View File

@@ -1,40 +1,9 @@
// Simple automation service for basic start/stop functionality
// Import AI Leverage Calculator for dynamic leverage
async function importAILeverageCalculator() {
try {
const { AILeverageCalculator } = await import('./ai-leverage-calculator.js');
return AILeverageCalculator;
} catch (error) {
console.warn('⚠️ AI Leverage Calculator not available, using default leverage');
return null;
}
}
// Import Enhanced Risk Manager with Learning for intelligent beach mode operation
async function importEnhancedRiskManager() {
try {
const EnhancedAutonomousRiskManager = require('./enhanced-autonomous-risk-manager.js');
return EnhancedAutonomousRiskManager;
} catch (error) {
console.warn('⚠️ Enhanced Risk Manager not available, falling back to stable monitor');
// Fallback to stable risk monitor
try {
const StableRiskMonitor = require('./stable-risk-monitor.js');
return StableRiskMonitor;
} catch (fallbackError) {
console.warn('⚠️ Stable Risk Monitor also not available, using basic monitoring');
return null;
}
}
}
class SimpleAutomation {
constructor() {
this.isRunning = false;
this.config = null;
this.intervalId = null;
this.riskManager = null; // Autonomous AI Risk Manager
this.stats = {
totalCycles: 0,
totalTrades: 0,
@@ -61,41 +30,8 @@ class SimpleAutomation {
this.isRunning = true;
this.stats.startTime = new Date().toISOString();
this.stats.status = 'Running';
console.log('✅ AUTOMATION STATUS: isRunning =', this.isRunning);
console.log('🎯 LIVE TRADING:', this.config.enableTrading ? 'ENABLED' : 'DISABLED');
this.stats.totalCycles = 0;
// Initialize Enhanced AI Risk Manager with Learning Capabilities
try {
const EnhancedRiskManagerClass = await importEnhancedRiskManager();
if (EnhancedRiskManagerClass) {
this.riskManager = new EnhancedRiskManagerClass();
console.log('🧠 ENHANCED BEACH MODE: AI learning system activated');
console.log('🎯 System will learn from every decision and improve over time');
// Start enhanced autonomous operation
setTimeout(() => {
if (this.riskManager && this.riskManager.beachMode) {
this.riskManager.beachMode();
console.log('🏖️ Full autonomous operation with AI learning active');
}
}, 2000);
}
} catch (error) {
console.log('🔄 Continuing without enhanced autonomous risk monitoring');
console.error('Risk manager initialization error:', error.message);
}
// Auto-enable trading when in LIVE mode
if (config.mode === 'LIVE') {
this.config.enableTrading = true;
console.log('🔥 LIVE TRADING ENABLED: Real trades will be executed');
} else {
this.config.enableTrading = false;
console.log('📊 SIMULATION MODE: Trades will be simulated only');
}
// Detect strategy
const timeframes = config.selectedTimeframes;
let strategy = 'General';
@@ -137,22 +73,14 @@ class SimpleAutomation {
async stop() {
try {
console.log('🛑 STOPPING AUTOMATION...');
this.isRunning = false;
this.stats.status = 'Stopped';
console.log('✅ AUTOMATION STATUS: isRunning =', this.isRunning);
if (this.intervalId) {
clearInterval(this.intervalId);
this.intervalId = null;
}
// Stop risk monitor if running
if (this.riskManager && this.riskManager.stop) {
this.riskManager.stop();
console.log('🏖️ Beach mode monitoring stopped');
}
console.log('SIMPLE AUTOMATION: Stopped');
return { success: true, message: 'Automation stopped successfully' };
@@ -164,12 +92,6 @@ class SimpleAutomation {
async runCycle() {
try {
// Check if automation should still be running
if (!this.isRunning) {
console.log('⏹️ AUTOMATION STOPPED: Skipping cycle');
return;
}
this.stats.totalCycles++;
this.stats.lastActivity = new Date().toISOString();
@@ -180,32 +102,10 @@ class SimpleAutomation {
if (this.config) {
// Perform actual analysis using enhanced screenshot API
await this.performAnalysis();
// Reset error counter on successful cycle
this.stats.consecutiveErrors = 0;
}
} catch (error) {
console.error('❌ CRITICAL ERROR in automation cycle:', error);
console.error('❌ Stack trace:', error.stack);
// Increment error counter
this.stats.consecutiveErrors = (this.stats.consecutiveErrors || 0) + 1;
// If too many consecutive errors, stop automation
if (this.stats.consecutiveErrors >= 3) {
console.error('🚨 TOO MANY ERRORS: Stopping automation after', this.stats.consecutiveErrors, 'consecutive failures');
this.isRunning = false;
this.stats.status = 'Stopped due to errors';
if (this.intervalId) {
clearInterval(this.intervalId);
this.intervalId = null;
}
return;
}
console.log(`⚠️ Error ${this.stats.consecutiveErrors}/3 - Will retry next cycle`);
console.error('Error in automation cycle:', error);
}
}
@@ -376,8 +276,10 @@ class SimpleAutomation {
}
shouldExecuteTrade(analysis) {
// Always allow trade execution - the useRealDEX flag determines if it's real or simulated
console.log(`<EFBFBD> TRADE MODE: ${this.config.mode || 'SIMULATION'} - Trading ${this.config.enableTrading ? 'ENABLED' : 'DISABLED'}`);
if (this.config.mode !== 'LIVE') {
console.log('📊 SIMULATION MODE: Would execute trade');
return false;
}
const recommendation = analysis.recommendation?.toLowerCase() || '';
const confidence = analysis.confidence || 0;
@@ -399,7 +301,6 @@ class SimpleAutomation {
async executeTrade(analysis) {
try {
console.log('💰 EXECUTING TRADE...');
console.log('📊 Analysis data:', JSON.stringify(analysis, null, 2));
// Map analysis recommendation to trading side
const recommendation = analysis.recommendation?.toLowerCase() || '';
@@ -414,110 +315,13 @@ class SimpleAutomation {
return { success: false, error: 'Invalid recommendation: ' + recommendation };
}
// Extract stop loss and take profit from analysis
let stopLoss = null;
let takeProfit = null;
// Try to extract from the structured analysis format
if (analysis.stopLoss && typeof analysis.stopLoss === 'object') {
stopLoss = analysis.stopLoss.price;
} else if (analysis.stopLoss && typeof analysis.stopLoss === 'number') {
stopLoss = analysis.stopLoss;
}
// Extract take profit - prefer tp1 if available
if (analysis.takeProfits && typeof analysis.takeProfits === 'object') {
if (analysis.takeProfits.tp1 && analysis.takeProfits.tp1.price) {
takeProfit = analysis.takeProfits.tp1.price;
} else if (analysis.takeProfits.tp2 && analysis.takeProfits.tp2.price) {
takeProfit = analysis.takeProfits.tp2.price;
}
} else if (analysis.takeProfit && typeof analysis.takeProfit === 'number') {
takeProfit = analysis.takeProfit;
}
// Fallback: try to extract from nested levels object
if (!stopLoss && analysis.levels) {
stopLoss = analysis.levels.stopLoss || analysis.levels.stop;
}
if (!takeProfit && analysis.levels) {
takeProfit = analysis.levels.takeProfit || analysis.levels.target;
}
// Parse numeric values if they're strings
if (stopLoss && typeof stopLoss === 'string') {
stopLoss = parseFloat(stopLoss.replace(/[^0-9.]/g, ''));
}
if (takeProfit && typeof takeProfit === 'string') {
takeProfit = parseFloat(takeProfit.replace(/[^0-9.]/g, ''));
}
console.log(`🎯 Trade levels - SL: ${stopLoss}, TP: ${takeProfit}`);
// Calculate optimal leverage using AI Leverage Calculator
let optimalLeverage = 1; // Default fallback
console.log('🔧 DEBUG: Starting leverage calculation...');
try {
const AILeverageCalculator = await importAILeverageCalculator();
console.log('🔧 DEBUG: AI Leverage Calculator imported:', !!AILeverageCalculator);
if (AILeverageCalculator && stopLoss) {
console.log('🔧 DEBUG: Both calculator and stopLoss available, proceeding...');
// Get current price from analysis
const currentPrice = analysis.entry?.price || analysis.currentPrice || 178; // fallback price
// Get real account data from Drift API
let accountValue = 49; // fallback
let availableBalance = 49; // fallback
try {
const baseUrl = process.env.INTERNAL_API_URL || 'http://localhost:3000';
console.log('🔧 DEBUG: Fetching balance from:', baseUrl);
const balanceResponse = await fetch(`${baseUrl}/api/drift/balance`);
const balanceData = await balanceResponse.json();
if (balanceData.success) {
accountValue = balanceData.accountValue;
availableBalance = balanceData.availableBalance;
console.log(`💰 Real account data: $${accountValue.toFixed(2)} total, $${availableBalance.toFixed(2)} available`);
} else {
console.log('🔧 DEBUG: Balance API returned error:', balanceData);
}
} catch (balanceError) {
console.warn('⚠️ Failed to get real balance, using fallback:', balanceError.message);
}
console.log(`🧮 Calculating optimal leverage: Entry=$${currentPrice}, StopLoss=$${stopLoss}`);
const leverageResult = AILeverageCalculator.calculateOptimalLeverage({
accountValue,
availableBalance,
entryPrice: currentPrice,
stopLossPrice: stopLoss,
side: side === 'BUY' ? 'long' : 'short',
maxLeverageAllowed: 10, // Drift platform max
safetyBuffer: 0.10 // 10% safety buffer
});
optimalLeverage = leverageResult.recommendedLeverage;
console.log(`🎯 AI Calculated Leverage: ${optimalLeverage.toFixed(1)}x (Risk: ${leverageResult.riskAssessment})`);
console.log(`📊 Leverage Details: ${leverageResult.reasoning}`);
} else {
console.log('🔧 DEBUG: Skipping leverage calc - Calculator:', !!AILeverageCalculator, 'StopLoss:', !!stopLoss);
}
} catch (leverageError) {
console.warn('⚠️ Leverage calculation failed, using default 1x:', leverageError.message);
}
console.log(`🔧 DEBUG: Final leverage to use: ${optimalLeverage}x`);
// Use the trading API with proper fields for Drift
// Use the trading API with proper fields
const tradePayload = {
symbol: this.config.symbol,
side: side,
amount: this.config.tradingAmount || 49, // Use available balance
leverage: optimalLeverage, // Use AI-calculated optimal leverage
stopLoss: stopLoss,
takeProfit: takeProfit,
useRealDEX: this.config.enableTrading === true, // Use real DEX when live trading enabled
amount: this.config.tradingAmount || 10, // Default to $10 if not set
type: 'market',
tradingMode: 'SPOT',
analysis: analysis // Include analysis for reference
};
@@ -548,27 +352,14 @@ class SimpleAutomation {
}
getStatus() {
const baseStatus = {
return {
isActive: this.isRunning,
mode: this.config?.mode || 'SIMULATION',
enableTrading: this.config?.enableTrading || false,
tradingStatus: this.config?.enableTrading ? 'REAL TRADES' : 'SIMULATED ONLY',
symbol: this.config?.symbol || 'SOLUSD',
timeframes: this.config?.selectedTimeframes || [],
automationType: 'SIMPLE',
...this.stats
};
// Add more descriptive status based on running state
if (this.isRunning) {
baseStatus.detailedStatus = 'Running - Monitoring for trade opportunities';
baseStatus.nextAction = 'Next analysis cycle in progress';
} else {
baseStatus.detailedStatus = 'Stopped - No monitoring active';
baseStatus.nextAction = 'Start automation to begin monitoring';
}
return baseStatus;
}
}

View File

@@ -0,0 +1,530 @@
/**
* Simplified Stop Loss Learning System
*
* Simplified approach focusing on essential learning patterns
* without complex statistical analysis.
*/
const { PrismaClient } = require('@prisma/client');
const getDB = require('./database-util');
class SimplifiedStopLossLearner {
constructor() {
this.learningThresholds = {
emergency: 1.0, // Emergency exit at 1% from SL
risk: 2.0, // High risk at 2% from SL
mediumRisk: 5.0 // Medium risk at 5% from SL
};
}
async log(message) {
console.log(`[${new Date().toISOString()}] 🧠 SL Learner: ${message}`);
}
/**
* Record a stop loss related decision for learning
*/
async recordDecision(decisionData) {
try {
const learningRecord = {
type: 'STOP_LOSS_DECISION',
tradeId: decisionData.tradeId,
symbol: decisionData.symbol,
decision: decisionData.decision,
distanceFromSL: decisionData.distanceFromSL,
reasoning: decisionData.reasoning,
marketConditions: decisionData.marketConditions,
expectedOutcome: decisionData.expectedOutcome,
timestamp: new Date().toISOString()
};
const prisma = await getDB();
const record = await prisma.ai_learning_data.create({
data: {
id: `sl_decision_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
userId: 'default-user',
symbol: decisionData.symbol,
timeframe: 'DECISION',
analysisData: JSON.stringify(learningRecord),
marketConditions: JSON.stringify(decisionData.marketConditions || {}),
confidenceScore: 50 // Neutral starting confidence
}
});
await this.log(`📝 Decision recorded: ${decisionData.decision} for ${decisionData.symbol} at ${decisionData.distanceFromSL}%`);
return record.id;
} catch (error) {
await this.log(`❌ Error recording decision: ${error.message}`);
return null;
}
}
/**
* Update the outcome of a previously recorded decision
*/
async assessDecisionOutcome(outcomeData) {
try {
const prisma = await getDB();
// Find the original decision record
const originalRecord = await prisma.ai_learning_data.findUnique({
where: { id: outcomeData.decisionId }
});
if (!originalRecord) {
await this.log(`⚠️ Original decision ${outcomeData.decisionId} not found`);
return false;
}
// Parse the original decision data
const originalDecision = JSON.parse(originalRecord.analysisData);
// Create outcome record with learning data
const outcomeRecord = {
type: 'STOP_LOSS_OUTCOME',
originalDecisionId: outcomeData.decisionId,
actualOutcome: outcomeData.actualOutcome,
timeToOutcome: outcomeData.timeToOutcome,
pnlImpact: outcomeData.pnlImpact,
wasCorrect: this.evaluateDecisionCorrectness(originalDecision, outcomeData),
learningData: {
originalDecision: originalDecision.decision,
distanceFromSL: originalDecision.distanceFromSL,
outcome: outcomeData.actualOutcome,
profitability: outcomeData.pnlImpact > 0 ? 'PROFITABLE' : 'LOSS'
},
timestamp: new Date().toISOString()
};
await prisma.ai_learning_data.create({
data: {
id: `sl_outcome_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
userId: 'default-user',
symbol: originalDecision.symbol,
timeframe: 'OUTCOME',
analysisData: JSON.stringify(outcomeRecord),
marketConditions: originalRecord.marketConditions,
confidenceScore: outcomeRecord.wasCorrect ? 75 : 25
}
});
await this.log(`✅ Outcome assessed for ${outcomeData.decisionId}: ${outcomeData.actualOutcome} (${outcomeRecord.wasCorrect ? 'CORRECT' : 'INCORRECT'})`);
// Update learning thresholds based on outcomes
await this.updateThresholdsFromOutcome(originalDecision, outcomeRecord);
return true;
} catch (error) {
await this.log(`❌ Error assessing outcome: ${error.message}`);
return false;
}
}
/**
* Evaluate if the original decision was correct based on outcome
*/
evaluateDecisionCorrectness(originalDecision, outcome) {
const decision = originalDecision.decision;
const actualOutcome = outcome.actualOutcome;
const pnlImpact = outcome.pnlImpact;
// Define what constitutes a "correct" decision
if (decision === 'EMERGENCY_EXIT' && (actualOutcome === 'STOPPED_OUT' || pnlImpact < -50)) {
return true; // Correctly identified emergency
}
if (decision === 'HOLD_POSITION' && pnlImpact > 0) {
return true; // Correctly held profitable position
}
if (decision === 'ADJUST_STOP_LOSS' && actualOutcome === 'TAKE_PROFIT') {
return true; // Adjustment led to profitable exit
}
return false;
}
/**
* Get smart recommendation based on learned patterns
*/
async getSmartRecommendation(requestData) {
try {
const { distanceFromSL, symbol, marketConditions } = requestData;
// Get historical data for similar situations
const prisma = await getDB();
const similarDecisions = await prisma.ai_learning_data.findMany({
where: {
symbol: symbol,
analysisData: {
string_contains: '"type":"STOP_LOSS_DECISION"'
}
},
orderBy: { createdAt: 'desc' },
take: 20
});
// Analyze patterns from similar situations
let recommendation = this.getBaseRecommendation(distanceFromSL);
if (similarDecisions.length >= 3) {
const learnedRecommendation = await this.analyzePatterns(similarDecisions, distanceFromSL);
if (learnedRecommendation) {
recommendation = learnedRecommendation;
}
}
await this.log(`🎯 Smart recommendation for ${symbol} at ${distanceFromSL}%: ${recommendation.action}`);
return recommendation;
} catch (error) {
await this.log(`❌ Error getting smart recommendation: ${error.message}`);
return this.getBaseRecommendation(distanceFromSL);
}
}
/**
* Get base recommendation using current thresholds
*/
getBaseRecommendation(distanceFromSL) {
if (distanceFromSL <= this.learningThresholds.emergency) {
return {
action: 'EMERGENCY_EXIT',
confidence: 0.8,
reasoning: `Very close to SL (${distanceFromSL}%), emergency exit recommended`
};
} else if (distanceFromSL <= this.learningThresholds.risk) {
return {
action: 'HIGH_ALERT',
confidence: 0.7,
reasoning: `Close to SL (${distanceFromSL}%), monitor closely`
};
} else if (distanceFromSL <= this.learningThresholds.mediumRisk) {
return {
action: 'MONITOR',
confidence: 0.6,
reasoning: `Moderate distance from SL (${distanceFromSL}%), continue monitoring`
};
} else {
return {
action: 'HOLD_POSITION',
confidence: 0.5,
reasoning: `Safe distance from SL (${distanceFromSL}%), maintain position`
};
}
}
/**
* Analyze historical patterns to improve recommendations
*/
async analyzePatterns(decisions, currentDistance) {
const outcomes = await this.getOutcomesForDecisions(decisions);
// Find decisions made at similar distances
const similarDistanceDecisions = decisions.filter(d => {
const data = JSON.parse(d.analysisData);
const distance = data.distanceFromSL;
return Math.abs(distance - currentDistance) <= 1.0; // Within 1%
});
if (similarDistanceDecisions.length < 2) {
return null; // Not enough similar data
}
// Analyze success rate of different actions at this distance
const actionSuccess = {};
for (const decision of similarDistanceDecisions) {
const decisionData = JSON.parse(decision.analysisData);
const action = decisionData.decision;
const outcome = outcomes.find(o => o.originalDecisionId === decision.id);
if (outcome) {
if (!actionSuccess[action]) {
actionSuccess[action] = { total: 0, successful: 0 };
}
actionSuccess[action].total++;
if (outcome.wasCorrect) {
actionSuccess[action].successful++;
}
}
}
// Find the action with highest success rate
let bestAction = null;
let bestSuccessRate = 0;
for (const [action, stats] of Object.entries(actionSuccess)) {
if (stats.total >= 2) { // Need at least 2 samples
const successRate = stats.successful / stats.total;
if (successRate > bestSuccessRate) {
bestSuccessRate = successRate;
bestAction = action;
}
}
}
if (bestAction && bestSuccessRate > 0.6) {
return {
action: bestAction,
confidence: bestSuccessRate,
reasoning: `Learned pattern: ${bestAction} successful ${Math.round(bestSuccessRate * 100)}% of time at this distance`
};
}
return null;
}
/**
* Get outcomes for a set of decisions
*/
async getOutcomesForDecisions(decisions) {
const prisma = await getDB();
const decisionIds = decisions.map(d => d.id);
const outcomes = await prisma.ai_learning_data.findMany({
where: {
analysisData: {
string_contains: '"type":"STOP_LOSS_OUTCOME"'
}
}
});
return outcomes.map(o => JSON.parse(o.analysisData))
.filter(outcome => decisionIds.includes(outcome.originalDecisionId));
}
/**
* Update learning thresholds based on outcome data
*/
async updateThresholdsFromOutcome(originalDecision, outcome) {
// Simple threshold adjustment based on outcomes
const distance = originalDecision.distanceFromSL;
const wasCorrect = outcome.wasCorrect;
if (!wasCorrect) {
// If decision was wrong, adjust thresholds slightly
if (originalDecision.decision === 'HOLD_POSITION' && outcome.actualOutcome === 'STOPPED_OUT') {
// We should have exited earlier - make thresholds more conservative
this.learningThresholds.emergency = Math.min(2.0, this.learningThresholds.emergency + 0.1);
this.learningThresholds.risk = Math.min(3.0, this.learningThresholds.risk + 0.1);
}
}
await this.log(`🔧 Thresholds updated: emergency=${this.learningThresholds.emergency}, risk=${this.learningThresholds.risk}`);
}
/**
* Get current learning status and statistics
*/
async analyzeDecisionPatterns() {
try {
const prisma = await getDB();
// Get recent decisions and outcomes
const decisions = await prisma.ai_learning_data.findMany({
where: {
analysisData: {
string_contains: '"type":"STOP_LOSS_DECISION"'
},
createdAt: {
gte: new Date(Date.now() - 7 * 24 * 60 * 60 * 1000) // Last 7 days
}
},
orderBy: { createdAt: 'desc' }
});
const outcomes = await prisma.ai_learning_data.findMany({
where: {
analysisData: {
string_contains: '"type":"STOP_LOSS_OUTCOME"'
},
createdAt: {
gte: new Date(Date.now() - 7 * 24 * 60 * 60 * 1000) // Last 7 days
}
}
});
// Analyze patterns
const patterns = {
totalDecisions: decisions.length,
totalOutcomes: outcomes.length,
successfulDecisions: outcomes.filter(o => JSON.parse(o.analysisData).wasCorrect).length,
successRate: outcomes.length > 0 ? outcomes.filter(o => JSON.parse(o.analysisData).wasCorrect).length / outcomes.length : 0,
learnedThresholds: this.learningThresholds
};
return patterns;
} catch (error) {
await this.log(`❌ Error analyzing patterns: ${error.message}`);
return {
totalDecisions: 0,
totalOutcomes: 0,
successfulDecisions: 0,
successRate: 0,
learnedThresholds: this.learningThresholds
};
}
}
/**
* Get learning status
*/
async getLearningStatus() {
try {
const prisma = await getDB();
const totalDecisions = await prisma.ai_learning_data.count({
where: {
analysisData: {
string_contains: '"type":"STOP_LOSS_DECISION"'
}
}
});
const recentDecisions = await prisma.ai_learning_data.count({
where: {
analysisData: {
string_contains: '"type":"STOP_LOSS_DECISION"'
},
createdAt: {
gte: new Date(Date.now() - 24 * 60 * 60 * 1000) // Last 24 hours
}
}
});
return {
totalDecisions,
recentDecisions,
thresholds: this.learningThresholds,
isActive: totalDecisions > 0
};
} catch (error) {
await this.log(`❌ Error getting learning status: ${error.message}`);
return {
totalDecisions: 0,
recentDecisions: 0,
thresholds: this.learningThresholds,
isActive: false
};
}
}
/**
* Generate comprehensive learning report
* Compatible implementation for enhanced-autonomous-risk-manager
*/
async generateLearningReport() {
try {
const status = await this.getLearningStatus();
const patterns = await this.analyzeDecisionPatterns();
// Calculate system confidence based on decisions made
const systemConfidence = this.calculateSystemConfidence(status.totalDecisions, status.recentDecisions, patterns.successRate);
const report = {
timestamp: new Date().toISOString(),
summary: {
totalDecisions: status.totalDecisions,
recentDecisions: status.recentDecisions,
successfulPatterns: patterns.successfulDecisions,
learningThresholds: this.learningThresholds,
systemConfidence: systemConfidence,
isActive: status.isActive,
successRate: patterns.successRate
},
insights: {
emergencyThreshold: this.learningThresholds.emergency,
riskThreshold: this.learningThresholds.risk,
mediumRiskThreshold: this.learningThresholds.mediumRisk,
confidenceLevel: systemConfidence > 0.7 ? 'HIGH' : systemConfidence > 0.4 ? 'MEDIUM' : 'LOW',
totalOutcomes: patterns.totalOutcomes,
decisionAccuracy: patterns.successRate
},
recommendations: this.generateSystemRecommendations(status, patterns)
};
await this.log(`📊 Learning report generated: ${report.summary.totalDecisions} decisions, ${(systemConfidence * 100).toFixed(1)}% confidence, ${(patterns.successRate * 100).toFixed(1)}% success rate`);
return report;
} catch (error) {
await this.log(`❌ Error generating learning report: ${error.message}`);
return {
timestamp: new Date().toISOString(),
summary: {
totalDecisions: 0,
recentDecisions: 0,
systemConfidence: 0.0,
isActive: false
},
error: error.message
};
}
}
/**
* Calculate system confidence based on learning data
*/
calculateSystemConfidence(totalDecisions, recentDecisions, successRate = 0) {
if (totalDecisions < 5) return 0.3; // Low confidence with insufficient data
if (totalDecisions < 20) return 0.4 + (successRate * 0.2); // Medium-low confidence boosted by success
if (totalDecisions < 50) return 0.6 + (successRate * 0.2); // Medium confidence boosted by success
// High confidence with lots of data, scaled by recent activity and success rate
const recentActivityFactor = Math.min(1.0, recentDecisions / 10);
const successFactor = successRate || 0.5; // Default to neutral if no success data
return Math.min(0.95, 0.7 + (recentActivityFactor * 0.1) + (successFactor * 0.15)); // Cap at 95%
}
/**
* Generate system recommendations based on learning status
*/
generateSystemRecommendations(status, patterns) {
const recommendations = [];
if (status.totalDecisions < 10) {
recommendations.push({
type: 'DATA_COLLECTION',
message: 'Need more decision data for reliable learning',
priority: 'HIGH'
});
}
if (status.recentDecisions < 3) {
recommendations.push({
type: 'ACTIVITY_LOW',
message: 'Recent trading activity is low - learning may be stale',
priority: 'MEDIUM'
});
}
if (patterns && patterns.successRate < 0.4 && patterns.totalOutcomes >= 5) {
recommendations.push({
type: 'THRESHOLD_ADJUSTMENT',
message: 'Low success rate detected - consider adjusting decision thresholds',
priority: 'HIGH'
});
}
if (status.totalDecisions >= 20 && patterns && patterns.successRate > 0.6) {
recommendations.push({
type: 'SYSTEM_PERFORMING',
message: 'System learning effectively with good success rate',
priority: 'LOW'
});
}
if (status.totalDecisions >= 50) {
recommendations.push({
type: 'OPTIMIZATION_READY',
message: 'Sufficient data available for advanced threshold optimization',
priority: 'LOW'
});
}
return recommendations;
}
}
module.exports = SimplifiedStopLossLearner;

View File

@@ -81,25 +81,13 @@ async function monitor() {
statusText = 'CAUTION - MONITOR';
}
console.log('🤖 AI AUTONOMOUS RISK MANAGEMENT:');
console.log('🛡️ STOP LOSS PROTECTION:');
console.log(` Stop Loss: $${sl.stopLossPrice.toFixed(4)} (${sl.distancePercent}% away)`);
console.log(` Status: ${statusIcon} ${statusText}`);
// AI Action Display
const aiActions = {
'DANGER - VERY CLOSE': '🚨 AI: Executing emergency analysis',
'WARNING - APPROACHING': '⚠️ AI: Reviewing position for adjustments',
'CAUTION - MONITOR': '🟡 AI: Enhanced monitoring active',
'SAFE': '✅ AI: Scanning for new opportunities'
};
const aiAction = aiActions[statusText] || '🤖 AI: Autonomous operation';
console.log(` AI Action: ${aiAction}`);
console.log(` Beach Mode: ${'🏖️ ACTIVE - No manual intervention needed'}`);
console.log(` Risk Level: ${positionData.monitor.riskLevel}`);
if (sl.isNear) {
console.log('\n🤖 AI AUTONOMOUS ACTION: Risk management protocols activated!');
console.log(' 🏖️ Relax - Your AI is handling this autonomously');
console.log('\n🚨 ALERT: PRICE NEAR STOP LOSS! 🚨');
}
console.log('');