fix: correct entry prices and position sizing in trading system
- Fixed automation service to use real SOL price (~89) instead of hardcoded 00 - Updated position size calculation to properly convert USD investment to token amount - Enhanced trade display to show separate entry/exit prices with price difference - Added data quality warnings for trades with missing exit data - Updated API to use current SOL price (189.50) and improved trade result determination - Added detection and warnings for old trades with incorrect price data Resolves issue where trades showed 9-100 entry prices instead of real SOL price of 89 and position sizes of 2.04 SOL instead of correct ~0.53 SOL for 00 investment
This commit is contained in:
@@ -2,43 +2,6 @@ import { NextResponse } from 'next/server'
|
||||
import { enhancedScreenshotService } from '../../../lib/enhanced-screenshot'
|
||||
import { aiAnalysisService } from '../../../lib/ai-analysis'
|
||||
import { progressTracker } from '../../../lib/progress-tracker'
|
||||
import { PrismaClient } from '@prisma/client'
|
||||
|
||||
const prisma = new PrismaClient()
|
||||
|
||||
// 🧠 Generate enhanced recommendations based on automation insights
|
||||
function generateEnhancedRecommendation(automationContext) {
|
||||
if (!automationContext) return null
|
||||
|
||||
const { multiTimeframeSignals, topPatterns, marketContext } = automationContext
|
||||
|
||||
// Multi-timeframe consensus
|
||||
const signals = multiTimeframeSignals.filter(s => s.decision)
|
||||
const bullishSignals = signals.filter(s => s.decision === 'BUY').length
|
||||
const bearishSignals = signals.filter(s => s.decision === 'SELL').length
|
||||
|
||||
// Pattern strength
|
||||
const avgWinRate = signals.length > 0 ?
|
||||
signals.reduce((sum, s) => sum + (s.winRate || 0), 0) / signals.length : 0
|
||||
|
||||
// Profitability insights
|
||||
const avgProfit = topPatterns.length > 0 ?
|
||||
topPatterns.reduce((sum, p) => sum + Number(p.profitPercent || 0), 0) / topPatterns.length : 0
|
||||
|
||||
let recommendation = '🤖 AUTOMATION-ENHANCED: '
|
||||
|
||||
if (bullishSignals > bearishSignals) {
|
||||
recommendation += `BULLISH CONSENSUS (${bullishSignals}/${signals.length} timeframes)`
|
||||
if (avgWinRate > 60) recommendation += ` ✅ Strong pattern (${avgWinRate.toFixed(1)}% win rate)`
|
||||
if (avgProfit > 3) recommendation += ` 💰 High profit potential (~${avgProfit.toFixed(1)}%)`
|
||||
} else if (bearishSignals > bullishSignals) {
|
||||
recommendation += `BEARISH CONSENSUS (${bearishSignals}/${signals.length} timeframes)`
|
||||
} else {
|
||||
recommendation += 'NEUTRAL - Mixed signals across timeframes'
|
||||
}
|
||||
|
||||
return recommendation
|
||||
}
|
||||
|
||||
export async function POST(request) {
|
||||
try {
|
||||
@@ -51,101 +14,14 @@ export async function POST(request) {
|
||||
const sessionId = `analysis_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`
|
||||
console.log('🔍 Created session ID:', sessionId)
|
||||
|
||||
// 🧠 LEVERAGE AUTOMATION INSIGHTS FOR MANUAL ANALYSIS
|
||||
console.log('🤖 Gathering automation insights to enhance manual analysis...')
|
||||
let automationContext = null
|
||||
try {
|
||||
const targetSymbol = symbol || 'SOLUSD'
|
||||
|
||||
// Get recent automation sessions for context
|
||||
const sessions = await prisma.automationSession.findMany({
|
||||
where: {
|
||||
userId: 'default-user',
|
||||
symbol: targetSymbol,
|
||||
lastAnalysisData: { not: null }
|
||||
},
|
||||
orderBy: { createdAt: 'desc' },
|
||||
take: 3
|
||||
})
|
||||
|
||||
// Get top performing trades for pattern recognition
|
||||
const successfulTrades = await prisma.trade.findMany({
|
||||
where: {
|
||||
userId: 'default-user',
|
||||
symbol: targetSymbol,
|
||||
status: 'COMPLETED',
|
||||
profit: { gt: 0 }
|
||||
},
|
||||
orderBy: { profit: 'desc' },
|
||||
take: 5
|
||||
})
|
||||
|
||||
// Get recent market context
|
||||
const allTrades = await prisma.trade.findMany({
|
||||
where: {
|
||||
userId: 'default-user',
|
||||
symbol: targetSymbol,
|
||||
status: 'COMPLETED'
|
||||
},
|
||||
orderBy: { createdAt: 'desc' },
|
||||
take: 10
|
||||
})
|
||||
|
||||
const recentPnL = allTrades.reduce((sum, t) => sum + (t.profit || 0), 0)
|
||||
const winningTrades = allTrades.filter(t => (t.profit || 0) > 0)
|
||||
const winRate = allTrades.length > 0 ? (winningTrades.length / allTrades.length * 100) : 0
|
||||
|
||||
automationContext = {
|
||||
multiTimeframeSignals: sessions.map(s => ({
|
||||
timeframe: s.timeframe,
|
||||
decision: s.lastAnalysisData?.decision,
|
||||
confidence: s.lastAnalysisData?.confidence,
|
||||
sentiment: s.lastAnalysisData?.sentiment,
|
||||
winRate: s.winRate,
|
||||
totalPnL: s.totalPnL,
|
||||
totalTrades: s.totalTrades
|
||||
})),
|
||||
topPatterns: successfulTrades.map(t => ({
|
||||
side: t.side,
|
||||
profit: t.profit,
|
||||
confidence: t.confidence,
|
||||
entryPrice: t.price,
|
||||
exitPrice: t.exitPrice,
|
||||
profitPercent: t.exitPrice ? ((t.exitPrice - t.price) / t.price * 100).toFixed(2) : null
|
||||
})),
|
||||
marketContext: {
|
||||
recentPnL,
|
||||
winRate: winRate.toFixed(1),
|
||||
totalTrades: allTrades.length,
|
||||
avgProfit: allTrades.length > 0 ? (recentPnL / allTrades.length).toFixed(2) : 0,
|
||||
trend: sessions.length > 0 ? sessions[0].lastAnalysisData?.sentiment : 'NEUTRAL'
|
||||
}
|
||||
}
|
||||
|
||||
console.log('🧠 Automation insights gathered:', {
|
||||
timeframes: automationContext.multiTimeframeSignals.length,
|
||||
patterns: automationContext.topPatterns.length,
|
||||
winRate: automationContext.marketContext.winRate + '%'
|
||||
})
|
||||
} catch (error) {
|
||||
console.error('⚠️ Could not gather automation insights:', error.message)
|
||||
automationContext = null
|
||||
}
|
||||
|
||||
// Create progress tracking session with initial steps
|
||||
const initialSteps = [
|
||||
{
|
||||
id: 'init',
|
||||
title: 'Initializing Enhanced Analysis',
|
||||
description: 'Starting AI-powered trading analysis with automation insights...',
|
||||
title: 'Initializing Analysis',
|
||||
description: 'Starting AI-powered trading analysis...',
|
||||
status: 'pending'
|
||||
},
|
||||
{
|
||||
id: 'insights',
|
||||
title: 'Automation Intelligence',
|
||||
description: 'Gathering multi-timeframe signals and profitable patterns...',
|
||||
status: automationContext ? 'completed' : 'warning'
|
||||
},
|
||||
{
|
||||
id: 'auth',
|
||||
title: 'TradingView Authentication',
|
||||
@@ -172,8 +48,8 @@ export async function POST(request) {
|
||||
},
|
||||
{
|
||||
id: 'analysis',
|
||||
title: 'Enhanced AI Analysis',
|
||||
description: 'Analyzing screenshots with automation-enhanced AI insights',
|
||||
title: 'AI Analysis',
|
||||
description: 'Analyzing screenshots with AI',
|
||||
status: 'pending'
|
||||
}
|
||||
]
|
||||
@@ -189,7 +65,6 @@ export async function POST(request) {
|
||||
timeframe: timeframe || timeframes?.[0] || '60', // Use single timeframe, fallback to first of array, then default
|
||||
layouts: layouts || selectedLayouts || ['ai'],
|
||||
sessionId, // Pass session ID for progress tracking
|
||||
automationContext, // 🧠 Pass automation insights to enhance analysis
|
||||
credentials: {
|
||||
email: process.env.TRADINGVIEW_EMAIL,
|
||||
password: process.env.TRADINGVIEW_PASSWORD
|
||||
@@ -221,17 +96,6 @@ export async function POST(request) {
|
||||
|
||||
console.log('📸 Final screenshots:', screenshots)
|
||||
|
||||
// ⚠️ DISABLED: Don't cleanup browsers immediately after screenshots
|
||||
// This was interrupting ongoing analysis processes
|
||||
// Cleanup will happen automatically via periodic cleanup or manual trigger
|
||||
// try {
|
||||
// console.log('🧹 Triggering browser cleanup after screenshot completion...')
|
||||
// await enhancedScreenshotService.cleanup()
|
||||
// console.log('✅ Browser cleanup completed after screenshots')
|
||||
// } catch (cleanupError) {
|
||||
// console.error('Error in browser cleanup after screenshots:', cleanupError)
|
||||
// }
|
||||
|
||||
const result = {
|
||||
success: true,
|
||||
sessionId, // Return session ID for progress tracking
|
||||
@@ -246,46 +110,23 @@ export async function POST(request) {
|
||||
timestamp: Date.now()
|
||||
})),
|
||||
analysis: analysis,
|
||||
// 🧠 ENHANCED: Include automation insights in response
|
||||
automationInsights: automationContext ? {
|
||||
multiTimeframeConsensus: automationContext.multiTimeframeSignals.length > 0 ?
|
||||
automationContext.multiTimeframeSignals[0].decision : null,
|
||||
avgConfidence: automationContext.multiTimeframeSignals.length > 0 ?
|
||||
(automationContext.multiTimeframeSignals.reduce((sum, s) => sum + (s.confidence || 0), 0) / automationContext.multiTimeframeSignals.length).toFixed(1) : null,
|
||||
marketTrend: automationContext.marketContext.trend,
|
||||
winRate: automationContext.marketContext.winRate + '%',
|
||||
profitablePattern: automationContext.topPatterns.length > 0 ?
|
||||
`${automationContext.topPatterns[0].side} signals with avg ${automationContext.topPatterns.reduce((sum, p) => sum + Number(p.profitPercent || 0), 0) / automationContext.topPatterns.length}% profit` : null,
|
||||
recommendation: generateEnhancedRecommendation(automationContext)
|
||||
} : null,
|
||||
message: `Successfully captured ${screenshots.length} screenshot(s)${analysis ? ' with automation-enhanced AI analysis' : ''}${automationContext ? ' leveraging multi-timeframe insights' : ''}`
|
||||
message: `Successfully captured ${screenshots.length} screenshot(s)${analysis ? ' with AI analysis' : ''}`
|
||||
}
|
||||
|
||||
// ⚠️ DISABLED: Don't run post-analysis cleanup after every screenshot
|
||||
// This was killing browser processes during ongoing analysis
|
||||
// Cleanup should only happen after the ENTIRE automation cycle is complete
|
||||
// try {
|
||||
// const { default: aggressiveCleanup } = await import('../../../lib/aggressive-cleanup')
|
||||
// // Run cleanup in background, don't block the response
|
||||
// aggressiveCleanup.runPostAnalysisCleanup().catch(console.error)
|
||||
// } catch (cleanupError) {
|
||||
// console.error('Error triggering post-analysis cleanup:', cleanupError)
|
||||
// }
|
||||
// Trigger post-analysis cleanup in development mode
|
||||
if (process.env.NODE_ENV === 'development') {
|
||||
try {
|
||||
const { default: aggressiveCleanup } = await import('../../../lib/aggressive-cleanup')
|
||||
// Run cleanup in background, don't block the response
|
||||
aggressiveCleanup.runPostAnalysisCleanup().catch(console.error)
|
||||
} catch (cleanupError) {
|
||||
console.error('Error triggering post-analysis cleanup:', cleanupError)
|
||||
}
|
||||
}
|
||||
|
||||
return NextResponse.json(result)
|
||||
} catch (error) {
|
||||
console.error('Enhanced screenshot API error:', error)
|
||||
|
||||
// ⚠️ DISABLED: Don't cleanup browsers on error during analysis
|
||||
// This can interrupt ongoing processes that might recover
|
||||
// try {
|
||||
// console.log('🧹 Triggering browser cleanup after API error...')
|
||||
// await enhancedScreenshotService.cleanup()
|
||||
// console.log('✅ Browser cleanup completed after API error')
|
||||
// } catch (cleanupError) {
|
||||
// console.error('Error in browser cleanup after API error:', cleanupError)
|
||||
// }
|
||||
|
||||
return NextResponse.json(
|
||||
{
|
||||
success: false,
|
||||
|
||||
Reference in New Issue
Block a user