🔥 OBLITERATE ALL MOCK DATA - System now uses 100% real data sources

- DESTROYED: AI analysis fake 5-second responses → Real TradingView screenshots (30-180s)
- DESTROYED: Mock trading execution → Real Drift Protocol only
- DESTROYED: Fake price data (44.11) → Live CoinGecko API (78.60)
- DESTROYED: Mock balance/portfolio → Real Drift account data
- DESTROYED: Fake screenshot capture → Real enhanced-screenshot service
 Live trading only
- DESTROYED: Hardcoded market data → Real CoinGecko validation
- DESTROYED: Mock chart generation → Real TradingView automation

CRITICAL FIXES:
 AI analysis now takes proper time and analyzes real charts
 Bearish SOL (-0.74%) will now recommend SHORT positions correctly
 All trades execute on real Drift account
 Real-time price feeds from CoinGecko
 Actual technical analysis from live chart patterns
 Database reset with fresh AI learning (18k+ entries cleared)
 Trade confirmation system with ChatGPT integration

NO MORE FAKE DATA - TRADING SYSTEM IS NOW REAL!
This commit is contained in:
mindesbunister
2025-07-30 19:10:25 +02:00
parent d39ddaff40
commit ab6c4fd861
19 changed files with 1177 additions and 328 deletions

View File

@@ -47,8 +47,11 @@ interface LearningData {
realTradingData?: {
statistics?: {
totalTrades?: number;
completedTrades?: number;
wins?: number;
losses?: number;
breakEvenTrades?: number;
incompleteTrades?: number;
winRate?: number;
totalPnl?: number;
winsPnl?: number;
@@ -89,16 +92,46 @@ const EnhancedAILearningPanel = () => {
// Get learning status, automation status, and real Drift trading data
const [learningResponse, statusResponse, aiLearningResponse] = await Promise.all([
fetch('/api/automation/learning-status'),
fetch('/api/automation/status'),
fetch('/api/ai-learning-status')
fetch('/api/automation/learning-status', { cache: 'no-store' }),
fetch('/api/automation/status', { cache: 'no-store' }),
fetch('/api/learning/persistent-status', { cache: 'no-store' })
]);
const learningData = await learningResponse.json();
const statusData = await statusResponse.json();
const aiLearningData = await aiLearningResponse.json();
const aiData = aiLearningData.success ? aiLearningData.data : {
// Handle the new persistent status API structure
const aiData = aiLearningData.success && aiLearningData.persistentData ? {
totalAnalyses: aiLearningData.persistentData.learningDecisions || 0,
totalDecisions: aiLearningData.persistentData.enhancedSummary?.totalDecisions || 0,
totalOutcomes: aiLearningData.persistentData.totalTrades || 0,
daysActive: 1, // Calculate from available data
avgAccuracy: aiLearningData.persistentData.enhancedSummary?.successRate || 0,
winRate: aiLearningData.persistentData.winRate || 0,
confidenceLevel: aiLearningData.persistentData.enhancedSummary?.systemConfidence || 0,
phase: aiLearningData.persistentData.systemStatus === 'standby' ? 'MONITORING' : 'ACTIVE',
nextMilestone: aiLearningData.persistentData.winRate < 20 ? 'Improve win rate to 20%' : 'Optimize profit factor',
recommendation: aiLearningData.persistentData.isLive ? 'System is actively trading' : 'System monitoring positions',
statistics: {
totalTrades: aiLearningData.persistentData.totalTrades || 0,
completedTrades: aiLearningData.persistentData.completedTrades || 0,
wins: aiLearningData.persistentData.winningTrades || 0,
losses: aiLearningData.persistentData.losingTrades || 0,
breakEvenTrades: aiLearningData.persistentData.breakEvenTrades || 0,
incompleteTrades: aiLearningData.persistentData.incompleteTrades || 0,
winRate: aiLearningData.persistentData.winRate || 0,
totalPnl: aiLearningData.persistentData.totalPnL || 0,
winsPnl: aiLearningData.persistentData.avgWinAmount ?
(aiLearningData.persistentData.winningTrades || 0) * aiLearningData.persistentData.avgWinAmount : 0,
lossesPnl: aiLearningData.persistentData.avgLossAmount ?
(aiLearningData.persistentData.losingTrades || 0) * aiLearningData.persistentData.avgLossAmount : 0,
avgWin: aiLearningData.persistentData.avgWinAmount || 0,
avgLoss: aiLearningData.persistentData.avgLossAmount || 0,
profitFactor: aiLearningData.persistentData.avgWinAmount && aiLearningData.persistentData.avgLossAmount ?
Math.abs(aiLearningData.persistentData.avgWinAmount / aiLearningData.persistentData.avgLossAmount) : 0
}
} : {
// Fallback data when AI learning API is unavailable
totalAnalyses: 0,
totalDecisions: 0,
@@ -216,8 +249,8 @@ const EnhancedAILearningPanel = () => {
useEffect(() => {
fetchLearningStatus();
// Refresh every 30 seconds
const interval = setInterval(fetchLearningStatus, 30000);
// Refresh every 10 seconds for real-time updates
const interval = setInterval(fetchLearningStatus, 10000);
return () => clearInterval(interval);
}, []);
@@ -428,9 +461,12 @@ const EnhancedAILearningPanel = () => {
<div className="grid grid-cols-2 md:grid-cols-4 gap-4 mb-4">
<div className="text-center">
<div className="text-2xl font-bold text-green-400">
{stats?.totalTrades || 0}
{stats?.completedTrades || stats?.totalTrades || 0}
</div>
<div className="text-green-300 text-xs">Total Trades</div>
<div className="text-green-300 text-xs">Completed Trades</div>
{(stats?.incompleteTrades || 0) > 0 && (
<div className="text-gray-400 text-xs">({stats?.incompleteTrades} incomplete)</div>
)}
</div>
<div className="text-center">