Add persistent learning data and PnL display
- Created persistent learning status API with trading statistics - Added comprehensive PnL and win rate display to AI Learning panel - Implemented trading stats tracking with win/loss ratios - Added persistent data storage for historical trading performance - Enhanced learning panel with real-time trading metrics - Fixed learning data visibility when bot is not running - Added sample trading data for demonstration
This commit is contained in:
@@ -1,116 +1,163 @@
|
||||
// API route for persistent learning data that works regardless of automation status
|
||||
import { NextResponse } from 'next/server';
|
||||
import { PrismaClient } from '@prisma/client';
|
||||
import fs from 'fs/promises';
|
||||
import path from 'path';
|
||||
|
||||
const prisma = new PrismaClient();
|
||||
const PERSISTENT_DATA_FILE = path.join(process.cwd(), 'data', 'learning-persistent.json');
|
||||
|
||||
// Default persistent data structure
|
||||
const defaultPersistentData = {
|
||||
totalTrades: 0,
|
||||
winningTrades: 0,
|
||||
losingTrades: 0,
|
||||
totalPnL: 0,
|
||||
winRate: 0,
|
||||
avgWinAmount: 0,
|
||||
avgLossAmount: 0,
|
||||
bestTrade: 0,
|
||||
worstTrade: 0,
|
||||
learningDecisions: 0,
|
||||
aiEnhancements: 0,
|
||||
riskThresholds: {
|
||||
emergency: 1,
|
||||
risk: 2,
|
||||
mediumRisk: 5
|
||||
},
|
||||
lastUpdated: new Date().toISOString(),
|
||||
systemStatus: 'learning',
|
||||
dataCollected: true
|
||||
};
|
||||
|
||||
async function ensureDataDirectory() {
|
||||
const dataDir = path.join(process.cwd(), 'data');
|
||||
try {
|
||||
await fs.access(dataDir);
|
||||
} catch {
|
||||
await fs.mkdir(dataDir, { recursive: true });
|
||||
}
|
||||
}
|
||||
|
||||
async function loadPersistentData() {
|
||||
try {
|
||||
await ensureDataDirectory();
|
||||
const data = await fs.readFile(PERSISTENT_DATA_FILE, 'utf8');
|
||||
return JSON.parse(data);
|
||||
} catch (error) {
|
||||
// File doesn't exist or is invalid, return default data
|
||||
return defaultPersistentData;
|
||||
}
|
||||
}
|
||||
|
||||
async function savePersistentData(data) {
|
||||
try {
|
||||
await ensureDataDirectory();
|
||||
await fs.writeFile(PERSISTENT_DATA_FILE, JSON.stringify(data, null, 2));
|
||||
return true;
|
||||
} catch (error) {
|
||||
console.error('Error saving persistent data:', error);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
export async function GET() {
|
||||
try {
|
||||
// Get persistent learning statistics from database using raw SQL
|
||||
const [
|
||||
totalDecisions,
|
||||
recentDecisions,
|
||||
totalTrades,
|
||||
successfulTrades,
|
||||
recentTrades
|
||||
] = await Promise.all([
|
||||
// Total AI decisions count
|
||||
prisma.$queryRaw`SELECT COUNT(*) as count FROM ai_learning_data`,
|
||||
|
||||
// Recent decisions (last 24 hours)
|
||||
prisma.$queryRaw`SELECT COUNT(*) as count FROM ai_learning_data WHERE createdAt >= datetime('now', '-24 hours')`,
|
||||
|
||||
// Total trades
|
||||
prisma.$queryRaw`SELECT COUNT(*) as count FROM trades`,
|
||||
|
||||
// Successful trades (profit > 0)
|
||||
prisma.$queryRaw`SELECT COUNT(*) as count FROM trades WHERE profit > 0`,
|
||||
|
||||
// Recent trades with PnL data
|
||||
prisma.$queryRaw`
|
||||
SELECT id, symbol, profit, side, confidence, marketSentiment, createdAt, closedAt, status
|
||||
FROM trades
|
||||
WHERE profit IS NOT NULL AND status = 'COMPLETED'
|
||||
ORDER BY createdAt DESC
|
||||
LIMIT 10
|
||||
`
|
||||
]);
|
||||
|
||||
// Extract counts (BigInt to Number)
|
||||
const totalDecisionsCount = Number(totalDecisions[0]?.count || 0);
|
||||
const recentDecisionsCount = Number(recentDecisions[0]?.count || 0);
|
||||
const totalTradesCount = Number(totalTrades[0]?.count || 0);
|
||||
const successfulTradesCount = Number(successfulTrades[0]?.count || 0);
|
||||
|
||||
// Calculate metrics
|
||||
const successRate = totalTradesCount > 0 ? (successfulTradesCount / totalTradesCount) * 100 : 0;
|
||||
const totalPnl = recentTrades.reduce((sum, trade) => sum + (Number(trade.profit) || 0), 0);
|
||||
const avgPnl = recentTrades.length > 0 ? totalPnl / recentTrades.length : 0;
|
||||
const persistentData = await loadPersistentData();
|
||||
|
||||
// Get wins and losses
|
||||
const wins = recentTrades.filter(trade => Number(trade.profit) > 0).length;
|
||||
const losses = recentTrades.filter(trade => Number(trade.profit) < 0).length;
|
||||
|
||||
const persistentData = {
|
||||
success: true,
|
||||
statistics: {
|
||||
totalDecisions: totalDecisionsCount,
|
||||
recentDecisions: recentDecisionsCount,
|
||||
totalTrades: totalTradesCount,
|
||||
successfulTrades: successfulTradesCount,
|
||||
successRate: Math.round(successRate * 100) / 100,
|
||||
totalPnl: Math.round(totalPnl * 100) / 100,
|
||||
avgPnl: Math.round(avgPnl * 100) / 100,
|
||||
wins,
|
||||
losses,
|
||||
winRate: wins + losses > 0 ? Math.round((wins / (wins + losses)) * 100 * 100) / 100 : 0
|
||||
},
|
||||
recentTrades: recentTrades.map(trade => ({
|
||||
id: trade.id,
|
||||
symbol: trade.symbol,
|
||||
pnl: Number(trade.profit),
|
||||
result: Number(trade.profit) > 0 ? 'WIN' : 'LOSS',
|
||||
confidence: trade.confidence,
|
||||
side: trade.side,
|
||||
sentiment: trade.marketSentiment,
|
||||
date: trade.createdAt,
|
||||
closedAt: trade.closedAt
|
||||
})),
|
||||
systemHealth: {
|
||||
dataAvailability: totalDecisionsCount > 0 ? 'Good' : 'Limited',
|
||||
lastActivity: recentTrades.length > 0 ? recentTrades[0].createdAt : null,
|
||||
databaseConnected: true,
|
||||
activeDataSources: {
|
||||
aiDecisions: totalDecisionsCount,
|
||||
completedTrades: totalTradesCount,
|
||||
recentActivity: recentDecisionsCount
|
||||
// Get current automation status if available
|
||||
let currentStatus = null;
|
||||
try {
|
||||
const { getAutomationInstance } = await import('../../../../lib/automation-singleton.js');
|
||||
const automation = await getAutomationInstance();
|
||||
if (automation) {
|
||||
currentStatus = automation.getStatus();
|
||||
|
||||
// If automation has learning status, get it too
|
||||
if (typeof automation.getLearningStatus === 'function') {
|
||||
const learningStatus = await automation.getLearningStatus();
|
||||
if (learningStatus && learningStatus.report) {
|
||||
// Update some data from current learning status
|
||||
persistentData.lastUpdated = new Date().toISOString();
|
||||
persistentData.systemStatus = learningStatus.enabled ? 'active' : 'standby';
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
} catch (error) {
|
||||
console.warn('Could not get current automation status:', error.message);
|
||||
}
|
||||
|
||||
return NextResponse.json(persistentData);
|
||||
return NextResponse.json({
|
||||
success: true,
|
||||
persistentData: {
|
||||
...persistentData,
|
||||
isLive: currentStatus?.isActive || false,
|
||||
currentRunTime: currentStatus?.startTime || null,
|
||||
enhancedSummary: {
|
||||
totalDecisions: persistentData.learningDecisions,
|
||||
successRate: persistentData.winRate,
|
||||
systemConfidence: persistentData.winRate > 60 ? 0.8 : persistentData.winRate > 40 ? 0.6 : 0.3,
|
||||
isActive: persistentData.systemStatus === 'active',
|
||||
totalTrades: persistentData.totalTrades,
|
||||
totalPnL: persistentData.totalPnL
|
||||
},
|
||||
tradingStats: {
|
||||
totalTrades: persistentData.totalTrades,
|
||||
winningTrades: persistentData.winningTrades,
|
||||
losingTrades: persistentData.losingTrades,
|
||||
winRate: persistentData.winRate,
|
||||
totalPnL: persistentData.totalPnL,
|
||||
avgWinAmount: persistentData.avgWinAmount,
|
||||
avgLossAmount: persistentData.avgLossAmount,
|
||||
bestTrade: persistentData.bestTrade,
|
||||
worstTrade: persistentData.worstTrade
|
||||
},
|
||||
learningMetrics: {
|
||||
totalDecisions: persistentData.learningDecisions,
|
||||
aiEnhancements: persistentData.aiEnhancements,
|
||||
riskThresholds: persistentData.riskThresholds,
|
||||
dataQuality: persistentData.totalTrades > 10 ? 'Good' : persistentData.totalTrades > 5 ? 'Fair' : 'Limited'
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
} catch (error) {
|
||||
console.error('❌ Error fetching persistent learning data:', error);
|
||||
|
||||
console.error('Error in persistent status API:', error);
|
||||
return NextResponse.json({
|
||||
success: false,
|
||||
error: error.message,
|
||||
statistics: {
|
||||
totalDecisions: 0,
|
||||
totalTrades: 0,
|
||||
successRate: 0,
|
||||
totalPnl: 0,
|
||||
wins: 0,
|
||||
losses: 0,
|
||||
winRate: 0
|
||||
},
|
||||
systemHealth: {
|
||||
dataAvailability: 'Error',
|
||||
databaseConnected: false
|
||||
}
|
||||
persistentData: defaultPersistentData
|
||||
}, { status: 500 });
|
||||
} finally {
|
||||
await prisma.$disconnect();
|
||||
}
|
||||
}
|
||||
|
||||
export async function POST(request) {
|
||||
try {
|
||||
const updateData = await request.json();
|
||||
const currentData = await loadPersistentData();
|
||||
|
||||
// Update the persistent data
|
||||
const updatedData = {
|
||||
...currentData,
|
||||
...updateData,
|
||||
lastUpdated: new Date().toISOString()
|
||||
};
|
||||
|
||||
// Recalculate derived metrics
|
||||
if (updatedData.totalTrades > 0) {
|
||||
updatedData.winRate = (updatedData.winningTrades / updatedData.totalTrades) * 100;
|
||||
}
|
||||
|
||||
const saved = await savePersistentData(updatedData);
|
||||
|
||||
return NextResponse.json({
|
||||
success: saved,
|
||||
message: saved ? 'Persistent data updated' : 'Failed to save data',
|
||||
data: updatedData
|
||||
});
|
||||
|
||||
} catch (error) {
|
||||
console.error('Error updating persistent data:', error);
|
||||
return NextResponse.json({
|
||||
success: false,
|
||||
error: error.message
|
||||
}, { status: 500 });
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user