/** * Enhanced Autonomous AI Risk Management System with Learning * * This system automatically handles risk situations AND learns from every decision. * It records decisions, tracks outcomes, and continuously improves its decision-making. */ const StopLossDecisionLearner = require('./stop-loss-decision-learner'); const { exec } = require('child_process'); const util = require('util'); const execAsync = util.promisify(exec); class EnhancedAutonomousRiskManager { constructor() { this.isActive = false; this.learner = new StopLossDecisionLearner(); this.emergencyThreshold = 1.0; // Will be updated by learning system this.riskThreshold = 2.0; this.mediumRiskThreshold = 5.0; this.pendingDecisions = new Map(); // Track decisions awaiting outcomes this.lastAnalysis = null; } async log(message) { const timestamp = new Date().toISOString(); console.log(`[${timestamp}] 🤖 Enhanced Risk AI: ${message}`); } /** * Main analysis function that integrates learning-based decision making */ async analyzePosition(monitor) { try { if (!monitor || !monitor.hasPosition) { return { action: 'NO_ACTION', reasoning: 'No position to analyze', confidence: 1.0 }; } const { position, stopLossProximity } = monitor; const distance = parseFloat(stopLossProximity.distancePercent); // Update thresholds based on learning await this.updateThresholdsFromLearning(); // Get AI recommendation based on learned patterns const smartRecommendation = await this.learner.getSmartRecommendation({ distanceFromSL: distance, symbol: position.symbol, marketConditions: { price: position.entryPrice, // Current price context unrealizedPnl: position.unrealizedPnl, side: position.side } }); let decision; // Enhanced decision logic using learning if (distance < this.emergencyThreshold) { decision = await this.handleEmergencyRisk(monitor, smartRecommendation); } else if (distance < this.riskThreshold) { decision = await this.handleHighRisk(monitor, smartRecommendation); } else if (distance < this.mediumRiskThreshold) { decision = await this.handleMediumRisk(monitor, smartRecommendation); } else { decision = await this.handleSafePosition(monitor, smartRecommendation); } // Record this decision for learning const decisionId = await this.recordDecisionForLearning(monitor, decision, smartRecommendation); decision.decisionId = decisionId; this.lastAnalysis = { monitor, decision, timestamp: new Date() }; return decision; } catch (error) { await this.log(`❌ Error in position analysis: ${error.message}`); return { action: 'ERROR', reasoning: `Analysis error: ${error.message}`, confidence: 0.1 }; } } async handleEmergencyRisk(monitor, smartRecommendation) { const { position, stopLossProximity } = monitor; const distance = parseFloat(stopLossProximity.distancePercent); await this.log(`🚨 EMERGENCY: Position ${distance}% from stop loss!`); // Use learning-based recommendation if highly confident if (smartRecommendation.learningBased && smartRecommendation.confidence > 0.8) { await this.log(`🧠 Using learned strategy: ${smartRecommendation.suggestedAction} (${(smartRecommendation.confidence * 100).toFixed(1)}% confidence)`); return { action: smartRecommendation.suggestedAction, reasoning: `AI Learning: ${smartRecommendation.reasoning}`, confidence: smartRecommendation.confidence, urgency: 'CRITICAL', learningEnhanced: true, supportingData: smartRecommendation.supportingData }; } // Fallback to rule-based emergency logic return { action: 'EMERGENCY_EXIT', reasoning: 'Price critically close to stop loss. Autonomous exit to preserve capital.', confidence: 0.9, urgency: 'CRITICAL', parameters: { exitPercentage: 100, maxSlippage: 0.5 } }; } async handleHighRisk(monitor, smartRecommendation) { const { position, stopLossProximity } = monitor; const distance = parseFloat(stopLossProximity.distancePercent); await this.log(`âš ī¸ HIGH RISK: Position ${distance}% from stop loss`); // Check learning recommendation if (smartRecommendation.learningBased && smartRecommendation.confidence > 0.7) { return { action: smartRecommendation.suggestedAction, reasoning: `AI Learning: ${smartRecommendation.reasoning}`, confidence: smartRecommendation.confidence, urgency: 'HIGH', learningEnhanced: true }; } // Enhanced market analysis for high-risk situations const marketAnalysis = await this.analyzeMarketConditions(position.symbol); if (marketAnalysis.trend === 'BULLISH' && position.side === 'LONG') { return { action: 'TIGHTEN_STOP_LOSS', reasoning: 'Market still favorable. Tightening stop loss for better risk management.', confidence: 0.7, urgency: 'HIGH', parameters: { newStopLossDistance: distance * 0.7 // Tighten by 30% } }; } else { return { action: 'PARTIAL_EXIT', reasoning: 'Market conditions uncertain. Reducing position size to manage risk.', confidence: 0.75, urgency: 'HIGH', parameters: { exitPercentage: 50, keepStopLoss: true } }; } } async handleMediumRisk(monitor, smartRecommendation) { const { position, stopLossProximity } = monitor; const distance = parseFloat(stopLossProximity.distancePercent); await this.log(`🟡 MEDIUM RISK: Position ${distance}% from stop loss`); // Learning-based decision for medium risk if (smartRecommendation.learningBased && smartRecommendation.confidence > 0.6) { return { action: smartRecommendation.suggestedAction, reasoning: `AI Learning: ${smartRecommendation.reasoning}`, confidence: smartRecommendation.confidence, urgency: 'MEDIUM', learningEnhanced: true }; } // Default medium risk response return { action: 'ENHANCED_MONITORING', reasoning: 'Increased monitoring frequency. Preparing contingency plans.', confidence: 0.6, urgency: 'MEDIUM', parameters: { monitoringInterval: 30, // seconds alertThreshold: this.riskThreshold } }; } async handleSafePosition(monitor, smartRecommendation) { const { position } = monitor; // Even in safe positions, check for optimization opportunities if (smartRecommendation.learningBased && smartRecommendation.confidence > 0.8) { if (smartRecommendation.suggestedAction === 'SCALE_POSITION') { return { action: 'SCALE_POSITION', reasoning: `AI Learning: ${smartRecommendation.reasoning}`, confidence: smartRecommendation.confidence, urgency: 'LOW', learningEnhanced: true }; } } return { action: 'MONITOR', reasoning: 'Position is safe. Continuing standard monitoring.', confidence: 0.8, urgency: 'LOW' }; } /** * Record decision for learning purposes */ async recordDecisionForLearning(monitor, decision, smartRecommendation) { try { const { position, stopLossProximity } = monitor; const distance = parseFloat(stopLossProximity.distancePercent); const decisionData = { tradeId: position.id || `position_${Date.now()}`, symbol: position.symbol, decision: decision.action, distanceFromSL: distance, reasoning: decision.reasoning, currentPrice: position.entryPrice, confidenceScore: decision.confidence, expectedOutcome: this.predictOutcome(decision.action, distance), marketConditions: await this.getCurrentMarketConditions(position.symbol), learningRecommendation: smartRecommendation }; const decisionId = await this.learner.recordDecision(decisionData); // Store decision for outcome tracking this.pendingDecisions.set(decisionId, { ...decisionData, timestamp: new Date(), monitor: monitor }); await this.log(`📝 Recorded decision ${decisionId} for learning: ${decision.action}`); return decisionId; } catch (error) { await this.log(`❌ Error recording decision for learning: ${error.message}`); return null; } } /** * Assess outcomes of previous decisions */ async assessDecisionOutcomes() { try { for (const [decisionId, decisionData] of this.pendingDecisions.entries()) { const timeSinceDecision = Date.now() - decisionData.timestamp.getTime(); // Assess after sufficient time has passed (5 minutes minimum) if (timeSinceDecision > 5 * 60 * 1000) { const outcome = await this.determineDecisionOutcome(decisionData); if (outcome) { await this.learner.assessDecisionOutcome({ decisionId, actualOutcome: outcome.result, timeToOutcome: Math.floor(timeSinceDecision / 60000), // minutes pnlImpact: outcome.pnlImpact, additionalContext: outcome.context }); // Remove from pending decisions this.pendingDecisions.delete(decisionId); await this.log(`✅ Assessed outcome for decision ${decisionId}: ${outcome.result}`); } } } } catch (error) { await this.log(`❌ Error assessing decision outcomes: ${error.message}`); } } async determineDecisionOutcome(decisionData) { try { // Get current position status const currentStatus = await this.getCurrentPositionStatus(decisionData.symbol); if (!currentStatus) { return { result: 'POSITION_CLOSED', pnlImpact: 0, context: { reason: 'Position no longer exists' } }; } // Compare current situation with when decision was made const originalDistance = decisionData.distanceFromSL; const currentDistance = currentStatus.distanceFromSL; const pnlChange = currentStatus.unrealizedPnl - (decisionData.monitor.position?.unrealizedPnl || 0); // Determine if decision was beneficial if (decisionData.decision === 'EMERGENCY_EXIT' && currentDistance < 0.5) { return { result: 'AVOIDED_MAJOR_LOSS', pnlImpact: Math.abs(pnlChange), // Positive impact context: { originalDistance, currentDistance } }; } if (decisionData.decision === 'TIGHTEN_STOP_LOSS' && pnlChange > 0) { return { result: 'IMPROVED_PROFIT', pnlImpact: pnlChange, context: { originalDistance, currentDistance } }; } if (decisionData.decision === 'HOLD' && currentDistance > originalDistance) { return { result: 'CORRECT_HOLD', pnlImpact: pnlChange, context: { distanceImproved: currentDistance - originalDistance } }; } // Default assessment return { result: pnlChange >= 0 ? 'NEUTRAL_POSITIVE' : 'NEUTRAL_NEGATIVE', pnlImpact: pnlChange, context: { originalDistance, currentDistance } }; } catch (error) { await this.log(`❌ Error determining decision outcome: ${error.message}`); return null; } } async getCurrentPositionStatus(symbol) { try { const { stdout } = await execAsync('curl -s http://localhost:9001/api/automation/position-monitor'); const data = JSON.parse(stdout); if (data.success && data.monitor?.hasPosition) { return { distanceFromSL: parseFloat(data.monitor.stopLossProximity?.distancePercent || 0), unrealizedPnl: data.monitor.position?.unrealizedPnl || 0 }; } return null; } catch (error) { return null; } } async updateThresholdsFromLearning() { try { // Get learned optimal thresholds const patterns = await this.learner.analyzeDecisionPatterns(); if (patterns?.distanceOptimization) { const optimization = patterns.distanceOptimization; if (optimization.emergencyRange?.optimalThreshold) { this.emergencyThreshold = optimization.emergencyRange.optimalThreshold; } if (optimization.highRiskRange?.optimalThreshold) { this.riskThreshold = optimization.highRiskRange.optimalThreshold; } if (optimization.mediumRiskRange?.optimalThreshold) { this.mediumRiskThreshold = optimization.mediumRiskRange.optimalThreshold; } await this.log(`🔄 Updated thresholds from learning: Emergency=${this.emergencyThreshold.toFixed(2)}%, Risk=${this.riskThreshold.toFixed(2)}%, Medium=${this.mediumRiskThreshold.toFixed(2)}%`); } } catch (error) { await this.log(`❌ Error updating thresholds from learning: ${error.message}`); } } predictOutcome(action, distance) { // Predict what we expect to happen based on the action const predictions = { 'EMERGENCY_EXIT': 'AVOID_MAJOR_LOSS', 'PARTIAL_EXIT': 'REDUCE_RISK', 'TIGHTEN_STOP_LOSS': 'BETTER_RISK_REWARD', 'SCALE_POSITION': 'INCREASED_PROFIT', 'HOLD': 'MAINTAIN_POSITION', 'ENHANCED_MONITORING': 'EARLY_WARNING' }; return predictions[action] || 'UNKNOWN_OUTCOME'; } async analyzeMarketConditions(symbol) { // Enhanced market analysis for better decision making try { const { stdout } = await execAsync('curl -s http://localhost:9001/api/automation/position-monitor'); const data = JSON.parse(stdout); if (data.success && data.monitor?.position) { const pnl = data.monitor.position.unrealizedPnl; const trend = pnl > 0 ? 'BULLISH' : pnl < -1 ? 'BEARISH' : 'SIDEWAYS'; return { trend, strength: Math.abs(pnl), timeOfDay: new Date().getHours(), volatility: Math.random() * 0.1 // Mock volatility }; } } catch (error) { // Fallback analysis } return { trend: 'UNKNOWN', strength: 0, timeOfDay: new Date().getHours(), volatility: 0.05 }; } async getCurrentMarketConditions(symbol) { const conditions = await this.analyzeMarketConditions(symbol); return { ...conditions, dayOfWeek: new Date().getDay(), timestamp: new Date().toISOString() }; } /** * Enhanced Beach Mode with learning integration */ async beachMode() { await this.log('đŸ–ī¸ ENHANCED BEACH MODE: Autonomous operation with AI learning'); this.isActive = true; // Main monitoring loop const monitoringLoop = async () => { if (!this.isActive) return; try { // Check current positions const { stdout } = await execAsync('curl -s http://localhost:9001/api/automation/position-monitor'); const data = JSON.parse(stdout); if (data.success) { const decision = await this.analyzePosition(data.monitor); await this.executeDecision(decision); } // Assess outcomes of previous decisions await this.assessDecisionOutcomes(); } catch (error) { await this.log(`Error in beach mode cycle: ${error.message}`); } // Schedule next check if (this.isActive) { setTimeout(monitoringLoop, 60000); // Check every minute } }; // Start monitoring monitoringLoop(); // Generate learning reports periodically setInterval(async () => { if (this.isActive) { const report = await this.learner.generateLearningReport(); if (report) { await this.log(`📊 Learning Update: ${report.summary.totalDecisions} decisions, ${(report.summary.systemConfidence * 100).toFixed(1)}% confidence`); } } }, 15 * 60 * 1000); // Every 15 minutes } async executeDecision(decision) { await this.log(`đŸŽ¯ Executing decision: ${decision.action} - ${decision.reasoning} (Confidence: ${(decision.confidence * 100).toFixed(1)}%)`); // Add learning enhancement indicators if (decision.learningEnhanced) { await this.log(`🧠 Decision enhanced by AI learning system`); } // Implementation would depend on your trading API switch (decision.action) { case 'EMERGENCY_EXIT': await this.log('🚨 Implementing emergency exit protocol'); break; case 'PARTIAL_EXIT': await this.log('📉 Executing partial position closure'); break; case 'TIGHTEN_STOP_LOSS': await this.log('đŸŽ¯ Adjusting stop loss parameters'); break; case 'SCALE_POSITION': await this.log('📈 Scaling position size'); break; case 'ENHANCED_MONITORING': await this.log('đŸ‘ī¸ Activating enhanced monitoring'); break; default: await this.log(`â„šī¸ Monitoring: ${decision.reasoning}`); } } stop() { this.isActive = false; this.log('🛑 Enhanced autonomous risk management stopped'); } /** * Get learning system status and insights */ async getLearningStatus() { try { const report = await this.learner.generateLearningReport(); return { isLearning: true, totalDecisions: this.pendingDecisions.size + (report?.summary?.totalDecisions || 0), systemConfidence: report?.summary?.systemConfidence || 0.3, currentThresholds: { emergency: this.emergencyThreshold, risk: this.riskThreshold, mediumRisk: this.mediumRiskThreshold }, pendingAssessments: this.pendingDecisions.size, lastAnalysis: this.lastAnalysis, insights: report?.insights }; } catch (error) { return { isLearning: false, error: error.message }; } } } // Export for use in other modules module.exports = EnhancedAutonomousRiskManager; // Direct execution for testing if (require.main === module) { const riskManager = new EnhancedAutonomousRiskManager(); console.log('🤖 Enhanced Autonomous Risk Manager with AI Learning'); console.log('🧠 Now learning from every decision to become smarter!'); console.log('đŸ–ī¸ Perfect for beach mode - gets better while you relax!'); riskManager.beachMode(); process.on('SIGINT', () => { riskManager.stop(); process.exit(0); }); }