import OpenAI from 'openai' import fs from 'fs/promises' import path from 'path' import { enhancedScreenshotService, ScreenshotConfig } from './enhanced-screenshot' import { TradingViewCredentials } from './tradingview-automation' const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY, }) export interface AnalysisResult { summary: string marketSentiment: 'BULLISH' | 'BEARISH' | 'NEUTRAL' keyLevels: { support: number[] resistance: number[] } recommendation: 'BUY' | 'SELL' | 'HOLD' confidence: number // 0-100 reasoning: string // Enhanced trading analysis (optional) entry?: { price: number buffer?: string rationale: string } stopLoss?: { price: number rationale: string } takeProfits?: { tp1?: { price: number; description: string } tp2?: { price: number; description: string } } riskToReward?: string confirmationTrigger?: string indicatorAnalysis?: { rsi?: string vwap?: string obv?: string } } export class AIAnalysisService { async analyzeScreenshot(filename: string): Promise { try { const screenshotsDir = path.join(process.cwd(), 'screenshots') const imagePath = path.join(screenshotsDir, filename) // Read image file const imageBuffer = await fs.readFile(imagePath) const base64Image = imageBuffer.toString('base64') const prompt = `You are a technical chart analysis expert. Please analyze this TradingView chart image and provide objective technical analysis data. **Important**: This is for educational and research purposes only. Please analyze the technical indicators, price levels, and chart patterns visible in the image. Examine the chart and identify: - Current price action and trend direction - Key support and resistance levels visible on the chart - Technical indicator readings (RSI, moving averages, volume if visible) - Chart patterns or formations - Market structure elements Provide your analysis in this exact JSON format (replace values with your analysis): { "summary": "Objective description of what you observe in the chart", "marketSentiment": "BULLISH|BEARISH|NEUTRAL", "keyLevels": { "support": [list of visible support price levels as numbers], "resistance": [list of visible resistance price levels as numbers] }, "recommendation": "BUY|SELL|HOLD", "confidence": 75, "reasoning": "Technical analysis reasoning based on indicators and price action", "entry": { "price": 150.50, "buffer": "±0.25", "rationale": "Technical reasoning for entry level" }, "stopLoss": { "price": 148.00, "rationale": "Technical reasoning for stop level" }, "takeProfits": { "tp1": { "price": 152.00, "description": "First target reasoning" }, "tp2": { "price": 154.00, "description": "Second target reasoning" } }, "riskToReward": "1:2", "confirmationTrigger": "Technical signal to watch for", "indicatorAnalysis": { "rsi": "RSI level and interpretation", "vwap": "VWAP relationship to price", "obv": "Volume analysis if visible" } } Return only the JSON object with your technical analysis.` const response = await openai.chat.completions.create({ model: "gpt-4o", // Updated to current vision model messages: [ { role: "user", content: [ { type: "text", text: prompt }, { type: "image_url", image_url: { url: `data:image/png;base64,${base64Image}`, detail: "low" // Reduce token usage } } ] } ], max_tokens: 1024, temperature: 0.1 }) const content = response.choices[0]?.message?.content if (!content) return null console.log('AI response content:', content) // Extract JSON from response const match = content.match(/\{[\s\S]*\}/) if (!match) { console.error('No JSON found in response. Full content:', content) return null } const json = match[0] console.log('Raw JSON from AI:', json) const result = JSON.parse(json) console.log('Parsed result:', result) // Sanitize the result to ensure no nested objects cause React issues const sanitizedResult = { summary: typeof result.summary === 'string' ? result.summary : String(result.summary || ''), marketSentiment: result.marketSentiment || 'NEUTRAL', keyLevels: { support: Array.isArray(result.keyLevels?.support) ? result.keyLevels.support : [], resistance: Array.isArray(result.keyLevels?.resistance) ? result.keyLevels.resistance : [] }, recommendation: result.recommendation || 'HOLD', confidence: typeof result.confidence === 'number' ? result.confidence : 0, reasoning: typeof result.reasoning === 'string' ? result.reasoning : String(result.reasoning || ''), ...(result.entry && { entry: result.entry }), ...(result.stopLoss && { stopLoss: result.stopLoss }), ...(result.takeProfits && { takeProfits: result.takeProfits }), ...(result.riskToReward && { riskToReward: String(result.riskToReward) }), ...(result.confirmationTrigger && { confirmationTrigger: String(result.confirmationTrigger) }), ...(result.indicatorAnalysis && { indicatorAnalysis: result.indicatorAnalysis }) } // Optionally: validate result structure here return sanitizedResult as AnalysisResult } catch (e) { console.error('AI analysis error:', e) return null } } async analyzeMultipleScreenshots(filenames: string[]): Promise { try { const screenshotsDir = path.join(process.cwd(), 'screenshots') const images: any[] = [] for (const filename of filenames) { const imagePath = path.join(screenshotsDir, filename) const imageBuffer = await fs.readFile(imagePath) const base64Image = imageBuffer.toString('base64') images.push({ type: "image_url", image_url: { url: `data:image/png;base64,${base64Image}` } }) } const prompt = `You are a technical chart analysis expert. Please analyze these TradingView chart images and provide objective technical analysis data. **Important**: This is for educational and research purposes only. Please analyze the technical indicators, price levels, and chart patterns visible in the images. Examine all the charts and provide a consolidated analysis by identifying: - Current price action and trend direction across layouts - Key support and resistance levels visible on the charts - Technical indicator readings (RSI, moving averages, volume if visible) - Chart patterns or formations - Market structure elements - Cross-reference different timeframes/layouts for the most accurate analysis **CRITICAL: You MUST analyze the actual chart images provided. Do not respond with generic advice.** Provide your analysis in this exact JSON format (replace values with your analysis): { "summary": "Objective description combining analysis from all charts", "marketSentiment": "BULLISH|BEARISH|NEUTRAL", "keyLevels": { "support": [list of visible support price levels as numbers], "resistance": [list of visible resistance price levels as numbers] }, "recommendation": "BUY|SELL|HOLD", "confidence": 75, "reasoning": "Technical analysis reasoning based on indicators and price action from all layouts", "entry": { "price": 150.50, "buffer": "±0.25", "rationale": "Technical reasoning for entry level" }, "stopLoss": { "price": 148.00, "rationale": "Technical reasoning for stop level" }, "takeProfits": { "tp1": { "price": 152.00, "description": "First target reasoning" }, "tp2": { "price": 154.00, "description": "Second target reasoning" } }, "riskToReward": "1:2", "confirmationTrigger": "Technical signal to watch for", "indicatorAnalysis": { "rsi": "RSI level and interpretation", "vwap": "VWAP relationship to price", "obv": "Volume analysis if visible" } } Return only the JSON object with your consolidated technical analysis.` const response = await openai.chat.completions.create({ model: "gpt-4o", // gpt-4o has better vision capabilities than gpt-4-vision-preview messages: [ { role: "user", content: [ { type: "text", text: prompt }, ...images ] } ], max_tokens: 2000, // Increased for more detailed analysis temperature: 0.1 }) const content = response.choices[0]?.message?.content if (!content) { throw new Error('No content received from OpenAI') } console.log('AI response content:', content) // Parse the JSON response const jsonMatch = content.match(/\{[\s\S]*\}/) if (!jsonMatch) { console.error('No JSON found in response. Full content:', content) throw new Error('No JSON found in response') } console.log('Extracted JSON:', jsonMatch[0]) const analysis = JSON.parse(jsonMatch[0]) // Sanitize the analysis result to ensure no nested objects cause React issues const sanitizedAnalysis = { summary: typeof analysis.summary === 'string' ? analysis.summary : String(analysis.summary || ''), marketSentiment: analysis.marketSentiment || 'NEUTRAL', keyLevels: { support: Array.isArray(analysis.keyLevels?.support) ? analysis.keyLevels.support : [], resistance: Array.isArray(analysis.keyLevels?.resistance) ? analysis.keyLevels.resistance : [] }, recommendation: analysis.recommendation || 'HOLD', confidence: typeof analysis.confidence === 'number' ? analysis.confidence : 0, reasoning: typeof analysis.reasoning === 'string' ? analysis.reasoning : String(analysis.reasoning || ''), ...(analysis.entry && { entry: analysis.entry }), ...(analysis.stopLoss && { stopLoss: analysis.stopLoss }), ...(analysis.takeProfits && { takeProfits: analysis.takeProfits }), ...(analysis.riskToReward && { riskToReward: String(analysis.riskToReward) }), ...(analysis.confirmationTrigger && { confirmationTrigger: String(analysis.confirmationTrigger) }), ...(analysis.indicatorAnalysis && { indicatorAnalysis: analysis.indicatorAnalysis }) } // Validate the structure if (!sanitizedAnalysis.summary || !sanitizedAnalysis.marketSentiment || !sanitizedAnalysis.recommendation || typeof sanitizedAnalysis.confidence !== 'number') { console.error('Invalid analysis structure:', sanitizedAnalysis) throw new Error('Invalid analysis structure') } return sanitizedAnalysis } catch (error) { console.error('AI multi-analysis error:', error) return null } } async captureAndAnalyze( symbol: string, timeframe: string, credentials: TradingViewCredentials ): Promise { try { console.log(`Starting automated capture and analysis for ${symbol} ${timeframe}`) // Capture screenshot using automation const screenshot = await enhancedScreenshotService.captureQuick(symbol, timeframe, credentials) if (!screenshot) { throw new Error('Failed to capture screenshot') } console.log(`Screenshot captured: ${screenshot}`) // Analyze the captured screenshot const analysis = await this.analyzeScreenshot(screenshot) if (!analysis) { throw new Error('Failed to analyze screenshot') } console.log(`Analysis completed for ${symbol} ${timeframe}`) return analysis } catch (error) { console.error('Automated capture and analysis failed:', error) return null } } async captureAndAnalyzeMultiple( symbols: string[], timeframes: string[], credentials: TradingViewCredentials ): Promise> { const results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }> = [] for (const symbol of symbols) { for (const timeframe of timeframes) { try { console.log(`Processing ${symbol} ${timeframe}...`) const analysis = await this.captureAndAnalyze(symbol, timeframe, credentials) results.push({ symbol, timeframe, analysis }) // Small delay between captures to avoid overwhelming the system await new Promise(resolve => setTimeout(resolve, 2000)) } catch (error) { console.error(`Failed to process ${symbol} ${timeframe}:`, error) results.push({ symbol, timeframe, analysis: null }) } } } return results } async captureAndAnalyzeWithConfig(config: ScreenshotConfig): Promise<{ screenshots: string[] analysis: AnalysisResult | null }> { try { console.log(`Starting automated capture with config for ${config.symbol} ${config.timeframe}`) // Capture screenshots using enhanced service const screenshots = await enhancedScreenshotService.captureWithLogin(config) if (screenshots.length === 0) { throw new Error('No screenshots captured') } console.log(`${screenshots.length} screenshot(s) captured`) let analysis: AnalysisResult | null = null if (screenshots.length === 1) { // Single screenshot analysis analysis = await this.analyzeScreenshot(screenshots[0]) } else { // Multiple screenshots analysis analysis = await this.analyzeMultipleScreenshots(screenshots) } if (!analysis) { throw new Error('Failed to analyze screenshots') } console.log(`Analysis completed for ${config.symbol} ${config.timeframe}`) return { screenshots, analysis } } catch (error) { console.error('Automated capture and analysis with config failed:', error) return { screenshots: [], analysis: null } } } } export const aiAnalysisService = new AIAnalysisService()