Files
trading_bot_v3/lib/automation-service.ts.disabled
mindesbunister 91f6cd8b10 fix: complete emergency lockdown - stop all sequential analysis loops
CRITICAL FIX: Sequential analysis loops completely eliminated

- analysis-optimized endpoint was triggering automation service
- automation service was starting new analysis cycles after trades
- sequential (not parallel) analysis was creating continuous loops
- multiple automation services were active simultaneously

- Disabled analysis-optimized endpoint (safety message only)
- Disabled automation test endpoint (emergency mode only)
- Disabled auto-trading.ts service (backup created)
- Disabled automation-service.ts (backup created)
- All automation routes now use emergency-automation only

 VALIDATION RESULTS - ALL TESTS PASSED:
- Emergency rate limiting: ACTIVE (5-minute cooldown)
- Analysis loops: COMPLETELY DISABLED
- Process cleanup: WORKING (0 Chromium processes)
- Sequential analysis: BLOCKED AT SOURCE
- System lockdown: COMPLETE

- No more BUY signal → analysis loop → BUY signal cycles
- No more sequential analysis after trade execution
- No more multiple automation services running
- No more Chromium process accumulation
- System completely protected against runaway automation

The sequential analysis loop problem is PERMANENTLY FIXED.
2025-07-24 20:50:10 +02:00

816 lines
25 KiB
Plaintext

import { PrismaClient } from '@prisma/client'
import { aiAnalysisService, AnalysisResult } from './ai-analysis'
import { jupiterDEXService } from './jupiter-dex-service'
import { TradingViewCredentials } from './tradingview-automation'
const prisma = new PrismaClient()
export interface AutomationConfig {
userId: string
mode: 'SIMULATION' | 'LIVE'
symbol: string
timeframe: string
selectedTimeframes: string[] // Multi-timeframe support
tradingAmount: number
maxLeverage: number
// stopLossPercent and takeProfitPercent removed - AI calculates these automatically
maxDailyTrades: number
riskPercentage: number
dexProvider: 'JUPITER' | 'DRIFT'
}
export interface AutomationStatus {
isActive: boolean
mode: 'SIMULATION' | 'LIVE'
symbol: string
timeframe: string
totalTrades: number
successfulTrades: number
winRate: number
totalPnL: number
lastAnalysis?: Date
lastTrade?: Date
nextScheduled?: Date
errorCount: number
lastError?: string
}
export class AutomationService {
private activeSession: any = null
private intervalId: NodeJS.Timeout | null = null
private isRunning = false
private credentials: TradingViewCredentials | null = null
constructor() {
this.initialize()
}
private async initialize() {
// Load credentials from environment or database
this.credentials = {
email: process.env.TRADINGVIEW_EMAIL || '',
password: process.env.TRADINGVIEW_PASSWORD || ''
}
}
async startAutomation(config: AutomationConfig): Promise<boolean> {
try {
if (this.isRunning) {
throw new Error('Automation is already running')
}
// Validate configuration
if (!config.userId || !config.symbol || !config.timeframe) {
throw new Error('Invalid automation configuration')
}
// Create or update automation session
const existingSession = await prisma.automationSession.findFirst({
where: {
userId: config.userId,
symbol: config.symbol,
timeframe: config.timeframe
}
})
let session
if (existingSession) {
session = await prisma.automationSession.update({
where: { id: existingSession.id },
data: {
status: 'ACTIVE',
mode: config.mode,
settings: config as any,
updatedAt: new Date()
}
})
} else {
session = await prisma.automationSession.create({
data: {
userId: config.userId,
status: 'ACTIVE',
mode: config.mode,
symbol: config.symbol,
timeframe: config.timeframe,
settings: config as any
}
})
}
this.activeSession = session
this.isRunning = true
// Start the automation loop
this.startAutomationLoop(config)
console.log(`🤖 Automation started for ${config.symbol} ${config.timeframe} in ${config.mode} mode`)
return true
} catch (error) {
console.error('Failed to start automation:', error)
return false
}
}
async stopAutomation(): Promise<boolean> {
try {
if (!this.isRunning) {
return true
}
// Clear interval
if (this.intervalId) {
clearInterval(this.intervalId)
this.intervalId = null
}
// Update session status
if (this.activeSession) {
await prisma.automationSession.update({
where: { id: this.activeSession.id },
data: {
status: 'STOPPED',
updatedAt: new Date()
}
})
}
this.isRunning = false
this.activeSession = null
console.log('🛑 Automation stopped')
return true
} catch (error) {
console.error('Failed to stop automation:', error)
return false
}
}
async pauseAutomation(): Promise<boolean> {
try {
if (!this.isRunning || !this.activeSession) {
return false
}
// Clear interval but keep session
if (this.intervalId) {
clearInterval(this.intervalId)
this.intervalId = null
}
// Update session status
await prisma.automationSession.update({
where: { id: this.activeSession.id },
data: {
status: 'PAUSED',
updatedAt: new Date()
}
})
console.log('⏸️ Automation paused')
return true
} catch (error) {
console.error('Failed to pause automation:', error)
return false
}
}
async resumeAutomation(): Promise<boolean> {
try {
if (!this.activeSession) {
return false
}
// Update session status
await prisma.automationSession.update({
where: { id: this.activeSession.id },
data: {
status: 'ACTIVE',
updatedAt: new Date()
}
})
// Restart automation loop
const config = this.activeSession.settings as AutomationConfig
this.startAutomationLoop(config)
console.log('▶️ Automation resumed')
return true
} catch (error) {
console.error('Failed to resume automation:', error)
return false
}
}
private startAutomationLoop(config: AutomationConfig) {
// Calculate interval based on timeframe
const intervalMs = this.getIntervalFromTimeframe(config.timeframe)
console.log(`🔄 Starting automation loop every ${intervalMs/1000/60} minutes`)
this.intervalId = setInterval(async () => {
try {
await this.executeAutomationCycle(config)
} catch (error) {
console.error('Automation cycle error:', error)
await this.handleAutomationError(error)
}
}, intervalMs)
// Execute first cycle immediately
setTimeout(async () => {
try {
await this.executeAutomationCycle(config)
} catch (error) {
console.error('Initial automation cycle error:', error)
await this.handleAutomationError(error)
}
}, 5000) // 5 second delay for initialization
}
private async executeAutomationCycle(config: AutomationConfig) {
console.log(`🔄 Executing automation cycle for ${config.symbol} ${config.timeframe}`)
// Check for open positions first (instead of daily trade limit)
const hasOpenPosition = await this.checkForOpenPositions(config)
if (hasOpenPosition) {
console.log(`📊 Open position detected for ${config.symbol}, monitoring only`)
return
}
// Generate session ID for progress tracking
const sessionId = `auto_${Date.now()}_${Math.random().toString(36).substr(2, 8)}`
// Step 1: Capture screenshot and analyze
const screenshotConfig = {
symbol: config.symbol,
timeframe: config.timeframe,
layouts: ['ai', 'diy'],
sessionId,
analyze: true
}
const result = await aiAnalysisService.captureAndAnalyzeWithConfig(screenshotConfig)
if (!result.analysis || result.screenshots.length === 0) {
console.log('❌ Failed to capture or analyze chart')
return
}
// Step 2: Store analysis in database for learning (only if analysis exists)
if (result.analysis) {
await this.storeAnalysisForLearning(config, { ...result, analysis: result.analysis }, sessionId)
}
// Step 3: Check if we should execute trade
const shouldTrade = await this.shouldExecuteTrade(result.analysis, config)
if (!shouldTrade) {
console.log('📊 Analysis does not meet trading criteria')
return
}
// Step 4: Execute trade based on analysis
await this.executeTrade(config, result.analysis, result.screenshots[0])
// Step 5: Update session statistics
await this.updateSessionStats(config.userId)
}
private async storeAnalysisForLearning(
config: AutomationConfig,
result: { screenshots: string[], analysis: AnalysisResult },
sessionId: string
) {
try {
// Store in trading journal
await prisma.tradingJournal.create({
data: {
userId: config.userId,
screenshotUrl: result.screenshots.join(','),
aiAnalysis: JSON.stringify(result.analysis),
marketSentiment: result.analysis.marketSentiment,
keyLevels: result.analysis.keyLevels,
recommendation: result.analysis.recommendation,
confidence: result.analysis.confidence,
symbol: config.symbol,
timeframe: config.timeframe,
tradingMode: config.mode,
sessionId: sessionId,
priceAtAnalysis: result.analysis.entry?.price
}
})
// Store in AI learning data
await prisma.aILearningData.create({
data: {
userId: config.userId,
sessionId: sessionId,
analysisData: result.analysis as any,
marketConditions: {
timeframe: config.timeframe,
symbol: config.symbol,
timestamp: new Date().toISOString()
},
confidenceScore: result.analysis.confidence,
timeframe: config.timeframe,
symbol: config.symbol,
screenshot: result.screenshots[0],
predictedPrice: result.analysis.entry?.price
}
})
console.log('📚 Analysis stored for learning')
} catch (error) {
console.error('Failed to store analysis for learning:', error)
}
}
private async shouldExecuteTrade(analysis: AnalysisResult, config: AutomationConfig): Promise<boolean> {
// Check minimum confidence threshold
if (analysis.confidence < 70) {
console.log(`📊 Confidence too low: ${analysis.confidence}%`)
return false
}
// Check if recommendation is actionable
if (analysis.recommendation === 'HOLD') {
console.log('📊 Recommendation is HOLD')
return false
}
// Check if we have required trading levels
if (!analysis.entry || !analysis.stopLoss) {
console.log('📊 Missing entry or stop loss levels')
return false
}
// Check risk/reward ratio
if (analysis.riskToReward) {
const rr = this.parseRiskReward(analysis.riskToReward)
if (rr < 2) {
console.log(`📊 Risk/reward ratio too low: ${rr}`)
return false
}
}
// Check recent performance for dynamic adjustments
const recentPerformance = await this.getRecentPerformance(config.userId)
if (recentPerformance.winRate < 0.4 && recentPerformance.totalTrades > 10) {
console.log('📊 Recent performance too poor, requiring higher confidence')
return analysis.confidence > 80
}
return true
}
private async checkForOpenPositions(config: AutomationConfig): Promise<boolean> {
try {
console.log(`🔍 Checking for open positions for ${config.symbol}`)
// For Jupiter DEX, we don't have persistent positions like in Drift
// This method would need to be implemented based on your specific needs
// For now, return false to allow trading
if (config.dexProvider === 'DRIFT') {
// Check Drift positions via API
const response = await fetch('http://localhost:3000/api/drift/positions')
if (!response.ok) {
console.warn('⚠️ Could not fetch Drift positions, assuming no open positions')
return false
}
const data = await response.json()
if (!data.success || !data.positions) {
return false
}
// Check if there's an open position for the current symbol
const symbolBase = config.symbol.replace('USD', '') // SOLUSD -> SOL
const openPosition = data.positions.find((pos: any) =>
pos.symbol.includes(symbolBase) && pos.size > 0.001
)
if (openPosition) {
console.log(`📊 Found open ${openPosition.side} position: ${openPosition.symbol} ${openPosition.size}`)
return true
}
}
return false
} catch (error) {
console.error('❌ Error checking positions:', error)
// On error, assume no positions to allow trading
return false
}
}
private async executeTrade(config: AutomationConfig, analysis: AnalysisResult, screenshotUrl: string) {
try {
console.log(`🚀 Executing ${config.mode} trade: ${analysis.recommendation} ${config.symbol}`)
const side = analysis.recommendation === 'BUY' ? 'BUY' : 'SELL'
const amount = await this.calculateTradeAmount(config, analysis)
const leverage = Math.min(config.maxLeverage, 3) // Cap at 3x for safety
let tradeResult: any = null
if (config.mode === 'SIMULATION') {
// Simulate trade
tradeResult = await this.simulateTrade({
symbol: config.symbol,
side,
amount,
price: analysis.entry?.price || 0,
stopLoss: analysis.stopLoss?.price,
takeProfit: analysis.takeProfits?.tp1?.price,
leverage
})
} else {
// Execute real trade via unified trading endpoint
tradeResult = await this.executeUnifiedTrade({
symbol: config.symbol,
side,
amount,
stopLoss: analysis.stopLoss?.price,
takeProfit: analysis.takeProfits?.tp1?.price,
leverage,
dexProvider: config.dexProvider
})
}
// Store trade in database
await prisma.trade.create({
data: {
userId: config.userId,
symbol: config.symbol,
side,
amount,
price: analysis.entry?.price || 0,
status: tradeResult?.success ? 'FILLED' : 'FAILED',
isAutomated: true,
entryPrice: analysis.entry?.price,
stopLoss: analysis.stopLoss?.price,
takeProfit: analysis.takeProfits?.tp1?.price,
leverage,
timeframe: config.timeframe,
tradingMode: config.mode,
confidence: analysis.confidence,
marketSentiment: analysis.marketSentiment,
screenshotUrl,
aiAnalysis: JSON.stringify(analysis),
driftTxId: tradeResult?.txId,
executedAt: new Date()
}
})
console.log(`✅ Trade executed: ${tradeResult?.success ? 'SUCCESS' : 'FAILED'}`)
} catch (error) {
console.error('Trade execution error:', error)
// Store failed trade
await prisma.trade.create({
data: {
userId: config.userId,
symbol: config.symbol,
side: analysis.recommendation === 'BUY' ? 'BUY' : 'SELL',
amount: config.tradingAmount,
price: analysis.entry?.price || 0,
status: 'FAILED',
isAutomated: true,
timeframe: config.timeframe,
tradingMode: config.mode,
confidence: analysis.confidence,
marketSentiment: analysis.marketSentiment,
screenshotUrl,
aiAnalysis: JSON.stringify(analysis)
}
})
}
}
private async executeUnifiedTrade(params: {
symbol: string
side: string
amount: number
stopLoss?: number
takeProfit?: number
leverage?: number
dexProvider: 'JUPITER' | 'DRIFT'
}): Promise<{ success: boolean; txId?: string }> {
try {
console.log(`🚀 Executing ${params.dexProvider} trade: ${params.side} ${params.amount} ${params.symbol}`)
const response = await fetch('http://localhost:3000/api/automation/trade', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
symbol: params.symbol,
side: params.side,
amount: params.amount,
leverage: params.leverage,
stopLoss: params.stopLoss,
takeProfit: params.takeProfit,
dexProvider: params.dexProvider,
mode: 'LIVE'
})
})
if (!response.ok) {
throw new Error(`Trade request failed: ${response.statusText}`)
}
const result = await response.json()
return {
success: result.success,
txId: result.txId || result.transactionId
}
} catch (error) {
console.error('Unified trade execution error:', error)
return { success: false }
}
}
private async simulateTrade(params: {
symbol: string
side: string
amount: number
price: number
stopLoss?: number
takeProfit?: number
leverage?: number
}): Promise<{ success: boolean; txId?: string }> {
// Simulate realistic execution with small random variation
const priceVariation = 0.001 * (Math.random() - 0.5) // ±0.1%
const executedPrice = params.price * (1 + priceVariation)
// Simulate network delay
await new Promise(resolve => setTimeout(resolve, 500))
return {
success: true,
txId: `sim_${Date.now()}_${Math.random().toString(36).substr(2, 8)}`
}
}
private async calculateTradeAmount(config: AutomationConfig, analysis: AnalysisResult): Promise<number> {
try {
// Fetch actual account balance from Drift
console.log('💰 Fetching account balance for position sizing...')
const balanceResponse = await fetch(`http://localhost:3000/api/drift/balance`)
if (!balanceResponse.ok) {
console.log('⚠️ Failed to fetch balance, using fallback calculation')
// Fallback to config amount
let amount = Math.min(config.tradingAmount, 35) // Cap at $35 max
const riskAdjustment = config.riskPercentage / 100
return Math.max(amount * riskAdjustment, 5)
}
const balanceData = await balanceResponse.json()
const availableBalance = parseFloat(balanceData.availableBalance || '0')
console.log(`💰 Available balance: $${availableBalance}`)
if (availableBalance <= 0) {
throw new Error('No available balance')
}
// Calculate position size based on risk percentage of available balance
const riskAmount = availableBalance * (config.riskPercentage / 100)
// Adjust based on confidence (reduce risk for low confidence signals)
const confidenceMultiplier = Math.min(analysis.confidence / 100, 1)
let amount = riskAmount * confidenceMultiplier
// Apply leverage to get position size
amount *= Math.min(config.maxLeverage, 10)
// Ensure minimum trade amount but cap at available balance
amount = Math.max(amount, 5) // Minimum $5 position
amount = Math.min(amount, availableBalance * 0.8) // Never use more than 80% of balance
console.log(`📊 Position sizing calculation:`)
console.log(` - Available balance: $${availableBalance}`)
console.log(` - Risk percentage: ${config.riskPercentage}%`)
console.log(` - Risk amount: $${riskAmount.toFixed(2)}`)
console.log(` - Confidence multiplier: ${confidenceMultiplier}`)
console.log(` - Leverage: ${Math.min(config.maxLeverage, 10)}x`)
console.log(` - Final position size: $${amount.toFixed(2)}`)
return Math.round(amount * 100) / 100 // Round to 2 decimal places
} catch (error) {
console.log(`⚠️ Error calculating trade amount: ${error instanceof Error ? error.message : String(error)}`)
// Safe fallback - use small fixed amount
return 5
}
}
private parseRiskReward(rrString: string): number {
// Parse "1:2.5" format
const parts = rrString.split(':')
if (parts.length === 2) {
return parseFloat(parts[1]) / parseFloat(parts[0])
}
return 0
}
private getIntervalFromTimeframe(timeframe: string): number {
const intervals: { [key: string]: number } = {
'1m': 1 * 60 * 1000,
'5m': 5 * 60 * 1000,
'15m': 15 * 60 * 1000,
'30m': 30 * 60 * 1000,
'1h': 60 * 60 * 1000,
'2h': 2 * 60 * 60 * 1000,
'4h': 4 * 60 * 60 * 1000,
'6h': 6 * 60 * 60 * 1000,
'12h': 12 * 60 * 60 * 1000,
'1d': 24 * 60 * 60 * 1000
}
return intervals[timeframe] || intervals['1h'] // Default to 1 hour
}
private async getRecentPerformance(userId: string): Promise<{
winRate: number
totalTrades: number
avgRR: number
}> {
const thirtyDaysAgo = new Date()
thirtyDaysAgo.setDate(thirtyDaysAgo.getDate() - 30)
const trades = await prisma.trade.findMany({
where: {
userId,
isAutomated: true,
createdAt: {
gte: thirtyDaysAgo
},
status: 'FILLED'
}
})
const totalTrades = trades.length
const winningTrades = trades.filter(t => (t.pnlPercent || 0) > 0).length
const winRate = totalTrades > 0 ? winningTrades / totalTrades : 0
const avgRR = trades.reduce((sum, t) => sum + (t.actualRR || 0), 0) / Math.max(totalTrades, 1)
return { winRate, totalTrades, avgRR }
}
private async updateSessionStats(userId: string) {
try {
if (!this.activeSession) return
const stats = await this.getRecentPerformance(userId)
await prisma.automationSession.update({
where: { id: this.activeSession.id },
data: {
totalTrades: stats.totalTrades,
successfulTrades: Math.round(stats.totalTrades * stats.winRate),
winRate: stats.winRate,
avgRiskReward: stats.avgRR,
lastAnalysis: new Date()
}
})
} catch (error) {
console.error('Failed to update session stats:', error)
}
}
private async handleAutomationError(error: any) {
try {
if (this.activeSession) {
await prisma.automationSession.update({
where: { id: this.activeSession.id },
data: {
errorCount: { increment: 1 },
lastError: error.message || 'Unknown error',
updatedAt: new Date()
}
})
// Stop automation if too many errors
if (this.activeSession.errorCount >= 5) {
console.log('❌ Too many errors, stopping automation')
await this.stopAutomation()
}
}
} catch (dbError) {
console.error('Failed to handle automation error:', dbError)
}
}
async getStatus(): Promise<AutomationStatus | null> {
try {
if (!this.activeSession) {
return null
}
const session = await prisma.automationSession.findUnique({
where: { id: this.activeSession.id }
})
if (!session) {
return null
}
return {
isActive: this.isRunning,
mode: session.mode as 'SIMULATION' | 'LIVE',
symbol: session.symbol,
timeframe: session.timeframe,
totalTrades: session.totalTrades,
successfulTrades: session.successfulTrades,
winRate: session.winRate,
totalPnL: session.totalPnL,
lastAnalysis: session.lastAnalysis || undefined,
lastTrade: session.lastTrade || undefined,
nextScheduled: session.nextScheduled || undefined,
errorCount: session.errorCount,
lastError: session.lastError || undefined
}
} catch (error) {
console.error('Failed to get automation status:', error)
return null
}
}
async getLearningInsights(userId: string): Promise<{
totalAnalyses: number
avgAccuracy: number
bestTimeframe: string
worstTimeframe: string
commonFailures: string[]
recommendations: string[]
}> {
try {
const learningData = await prisma.aILearningData.findMany({
where: { userId },
orderBy: { createdAt: 'desc' },
take: 100
})
const totalAnalyses = learningData.length
const avgAccuracy = learningData.reduce((sum, d) => sum + (d.accuracyScore || 0), 0) / Math.max(totalAnalyses, 1)
// Group by timeframe to find best/worst
const timeframeStats = learningData.reduce((acc, d) => {
if (!acc[d.timeframe]) {
acc[d.timeframe] = { count: 0, accuracy: 0 }
}
acc[d.timeframe].count += 1
acc[d.timeframe].accuracy += d.accuracyScore || 0
return acc
}, {} as { [key: string]: { count: number, accuracy: number } })
const timeframes = Object.entries(timeframeStats).map(([tf, stats]) => ({
timeframe: tf,
avgAccuracy: stats.accuracy / stats.count
}))
const bestTimeframe = timeframes.sort((a, b) => b.avgAccuracy - a.avgAccuracy)[0]?.timeframe || 'Unknown'
const worstTimeframe = timeframes.sort((a, b) => a.avgAccuracy - b.avgAccuracy)[0]?.timeframe || 'Unknown'
return {
totalAnalyses,
avgAccuracy,
bestTimeframe,
worstTimeframe,
commonFailures: [
'Low confidence predictions',
'Missed support/resistance levels',
'Timeframe misalignment'
],
recommendations: [
'Focus on higher timeframes for better accuracy',
'Wait for higher confidence signals',
'Use multiple timeframe confirmation'
]
}
} catch (error) {
console.error('Failed to get learning insights:', error)
return {
totalAnalyses: 0,
avgAccuracy: 0,
bestTimeframe: 'Unknown',
worstTimeframe: 'Unknown',
commonFailures: [],
recommendations: []
}
}
}
}
export const automationService = new AutomationService()