Files
trading_bot_v3/lib/stop-loss-decision-learner.js
mindesbunister 08f9a9b541 🤖 COMPLETE: Learning-Enhanced AI with HTTP Compatibility
LEARNING INTEGRATION:
- Enhanced AI analysis service feeds historical data into OpenAI prompts
- Symbol/timeframe specific learning optimization
- Pattern recognition from past trade outcomes
- Confidence adjustment based on success rates

 HTTP COMPATIBILITY SYSTEM:
- HttpUtil with automatic curl/no-curl detection
- Node.js fallback for Docker environments without curl
- Updated all automation systems to use HttpUtil
- Production-ready error handling

 AUTONOMOUS RISK MANAGEMENT:
- Enhanced risk manager with learning integration
- Simplified learners using existing AILearningData schema
- Real-time position monitoring every 30 seconds
- Smart stop-loss decisions with AI learning

 INFRASTRUCTURE:
- Database utility for shared Prisma connections
- Beach mode status display system
- Complete error handling and recovery
- Docker container compatibility tested

Historical performance flows into OpenAI prompts before every trade.
2025-07-25 13:38:24 +02:00

600 lines
20 KiB
JavaScript

#!/usr/bin/env node
/**
* Stop Loss Decision Learning System
*
* This system makes the AI learn from its own decision-making process near stop loss.
* It records every decision, tracks outcomes, and continuously improves decision-making.
*/
const { getDB } = require('./db');
class StopLossDecisionLearner {
constructor() {
this.decisionHistory = [];
this.learningThresholds = {
emergencyDistance: 1.0,
highRiskDistance: 2.0,
mediumRiskDistance: 5.0
};
}
async getPrisma() {
return await getDB();
}
async log(message) {
const timestamp = new Date().toISOString();
console.log(`[${timestamp}] 🧠 SL Learner: ${message}`);
}
/**
* Record an AI decision made near stop loss for learning purposes
*/
async recordDecision(decisionData) {
try {
const decision = {
id: `decision_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
tradeId: decisionData.tradeId,
symbol: decisionData.symbol,
decisionType: decisionData.decision, // 'HOLD', 'EXIT', 'TIGHTEN_SL', 'PARTIAL_EXIT', 'EMERGENCY_EXIT'
distanceFromSL: decisionData.distanceFromSL,
reasoning: decisionData.reasoning,
marketConditions: {
price: decisionData.currentPrice,
trend: await this.analyzeMarketTrend(decisionData.symbol),
volatility: await this.calculateVolatility(decisionData.symbol),
volume: decisionData.volume || 'unknown',
timeOfDay: new Date().getHours(),
dayOfWeek: new Date().getDay()
},
confidenceScore: decisionData.confidenceScore || 0.7,
expectedOutcome: decisionData.expectedOutcome || 'BETTER_RESULT',
decisionTimestamp: new Date(),
status: 'PENDING_OUTCOME'
};
// Store in database
const prisma = await this.getPrisma();
await prisma.sLDecision.create({
data: {
id: decision.id,
tradeId: decision.tradeId,
symbol: decision.symbol,
decisionType: decision.decisionType,
distanceFromSL: decision.distanceFromSL,
reasoning: decision.reasoning,
marketConditions: JSON.stringify(decision.marketConditions),
confidenceScore: decision.confidenceScore,
expectedOutcome: decision.expectedOutcome,
decisionTimestamp: decision.decisionTimestamp,
status: decision.status
}
});
// Keep in memory for quick access
this.decisionHistory.push(decision);
await this.log(`📝 Recorded decision: ${decision.decisionType} at ${decision.distanceFromSL}% from SL - ${decision.reasoning}`);
return decision.id;
} catch (error) {
await this.log(`❌ Error recording decision: ${error.message}`);
return null;
}
}
/**
* Assess the outcome of a previous decision when trade closes or conditions change
*/
async assessDecisionOutcome(assessmentData) {
try {
const { decisionId, actualOutcome, timeToOutcome, pnlImpact, additionalContext } = assessmentData;
// Determine if the decision was correct
const wasCorrect = this.evaluateDecisionCorrectness(actualOutcome, pnlImpact);
const learningScore = this.calculateLearningScore(wasCorrect, pnlImpact, timeToOutcome);
// Update decision record
const prisma = await this.getPrisma();
await prisma.sLDecision.update({
where: { id: decisionId },
data: {
outcome: actualOutcome,
outcomeTimestamp: new Date(),
timeToOutcome,
pnlImpact,
wasCorrect,
learningScore,
additionalContext: JSON.stringify(additionalContext || {}),
status: 'ASSESSED'
}
});
// Update in-memory history
const decision = this.decisionHistory.find(d => d.id === decisionId);
if (decision) {
Object.assign(decision, {
outcome: actualOutcome,
outcomeTimestamp: new Date(),
wasCorrect,
learningScore,
status: 'ASSESSED'
});
}
await this.log(`✅ Assessed decision ${decisionId}: ${wasCorrect ? 'CORRECT' : 'INCORRECT'} - Score: ${learningScore.toFixed(2)}`);
// Trigger learning update
await this.updateLearningModel();
return { wasCorrect, learningScore };
} catch (error) {
await this.log(`❌ Error assessing decision outcome: ${error.message}`);
return null;
}
}
/**
* Analyze historical decisions to identify patterns and optimize future decisions
*/
async analyzeDecisionPatterns() {
try {
const prisma = await this.getPrisma();
const decisions = await prisma.sLDecision.findMany({
where: { status: 'ASSESSED' },
orderBy: { decisionTimestamp: 'desc' },
take: 100 // Analyze last 100 decisions
});
const patterns = {
successfulPatterns: [],
failurePatterns: [],
optimalTiming: {},
contextFactors: {},
distanceOptimization: {}
};
// Analyze success patterns by decision type
const decisionTypes = ['HOLD', 'EXIT', 'TIGHTEN_SL', 'PARTIAL_EXIT', 'EMERGENCY_EXIT'];
for (const type of decisionTypes) {
const typeDecisions = decisions.filter(d => d.decisionType === type);
const successRate = typeDecisions.length > 0 ?
typeDecisions.filter(d => d.wasCorrect).length / typeDecisions.length : 0;
const avgScore = typeDecisions.length > 0 ?
typeDecisions.reduce((sum, d) => sum + (d.learningScore || 0), 0) / typeDecisions.length : 0;
if (successRate > 0.6) { // 60%+ success rate
patterns.successfulPatterns.push({
decisionType: type,
successRate: successRate * 100,
avgScore,
sampleSize: typeDecisions.length,
optimalConditions: this.identifyOptimalConditions(typeDecisions.filter(d => d.wasCorrect))
});
} else if (typeDecisions.length >= 5) {
patterns.failurePatterns.push({
decisionType: type,
successRate: successRate * 100,
avgScore,
sampleSize: typeDecisions.length,
commonFailureReasons: this.identifyFailureReasons(typeDecisions.filter(d => !d.wasCorrect))
});
}
}
// Analyze optimal distance thresholds
patterns.distanceOptimization = await this.optimizeDistanceThresholds(decisions);
// Analyze timing patterns
patterns.optimalTiming = await this.analyzeTimingPatterns(decisions);
await this.log(`📊 Pattern analysis complete: ${patterns.successfulPatterns.length} successful patterns, ${patterns.failurePatterns.length} failure patterns identified`);
return patterns;
} catch (error) {
await this.log(`❌ Error analyzing decision patterns: ${error.message}`);
return null;
}
}
/**
* Get AI recommendation for current situation based on learned patterns
*/
async getSmartRecommendation(situationData) {
try {
const { distanceFromSL, symbol, marketConditions } = situationData;
// Get historical patterns for similar situations
const patterns = await this.analyzeDecisionPatterns();
const currentConditions = marketConditions || await this.getCurrentMarketConditions(symbol);
// Find most similar historical situations
const similarSituations = await this.findSimilarSituations({
distanceFromSL,
marketConditions: currentConditions
});
// Generate recommendation based on learned patterns
const recommendation = {
suggestedAction: 'HOLD', // Default
confidence: 0.5,
reasoning: 'Insufficient learning data',
learningBased: false,
supportingData: {}
};
if (similarSituations.length >= 3) {
const successfulActions = similarSituations
.filter(s => s.wasCorrect)
.map(s => s.decisionType);
const mostSuccessfulAction = this.getMostCommonAction(successfulActions);
const successRate = successfulActions.length / similarSituations.length;
recommendation.suggestedAction = mostSuccessfulAction;
recommendation.confidence = Math.min(0.95, successRate + 0.1);
recommendation.reasoning = `Based on ${similarSituations.length} similar situations, ${mostSuccessfulAction} succeeded ${(successRate * 100).toFixed(1)}% of the time`;
recommendation.learningBased = true;
recommendation.supportingData = {
historicalSamples: similarSituations.length,
successRate: successRate * 100,
avgPnlImpact: similarSituations.reduce((sum, s) => sum + (s.pnlImpact || 0), 0) / similarSituations.length
};
}
await this.log(`🎯 Smart recommendation: ${recommendation.suggestedAction} (${(recommendation.confidence * 100).toFixed(1)}% confidence) - ${recommendation.reasoning}`);
return recommendation;
} catch (error) {
await this.log(`❌ Error generating smart recommendation: ${error.message}`);
return {
suggestedAction: 'HOLD',
confidence: 0.3,
reasoning: `Error in recommendation system: ${error.message}`,
learningBased: false
};
}
}
/**
* Update learning model based on new decision outcomes
*/
async updateLearningModel() {
try {
const patterns = await this.analyzeDecisionPatterns();
if (patterns && patterns.distanceOptimization) {
// Update decision thresholds based on learning
this.learningThresholds = {
emergencyDistance: patterns.distanceOptimization.optimalEmergencyThreshold || 1.0,
highRiskDistance: patterns.distanceOptimization.optimalHighRiskThreshold || 2.0,
mediumRiskDistance: patterns.distanceOptimization.optimalMediumRiskThreshold || 5.0
};
await this.log(`🔄 Updated learning thresholds: Emergency=${this.learningThresholds.emergencyDistance}%, High Risk=${this.learningThresholds.highRiskDistance}%, Medium Risk=${this.learningThresholds.mediumRiskDistance}%`);
}
return true;
} catch (error) {
await this.log(`❌ Error updating learning model: ${error.message}`);
return false;
}
}
/**
* Helper methods for analysis
*/
evaluateDecisionCorrectness(actualOutcome, pnlImpact) {
// Define what constitutes a "correct" decision
const correctOutcomes = [
'BETTER_THAN_ORIGINAL_SL',
'AVOIDED_LOSS',
'IMPROVED_PROFIT',
'SUCCESSFUL_EXIT'
];
return correctOutcomes.includes(actualOutcome) || (pnlImpact && pnlImpact > 0);
}
calculateLearningScore(wasCorrect, pnlImpact, timeToOutcome) {
let score = wasCorrect ? 0.7 : 0.3; // Base score
// Adjust for P&L impact
if (pnlImpact) {
score += Math.min(0.2, pnlImpact / 100); // Max 0.2 bonus for positive P&L
}
// Adjust for timing (faster good decisions are better)
if (timeToOutcome && wasCorrect) {
const timingBonus = Math.max(0, 0.1 - (timeToOutcome / 3600)); // Bonus for decisions resolved within an hour
score += timingBonus;
}
return Math.max(0, Math.min(1, score));
}
identifyOptimalConditions(successfulDecisions) {
// Analyze common conditions in successful decisions
const conditions = {};
successfulDecisions.forEach(decision => {
try {
const market = JSON.parse(decision.marketConditions || '{}');
// Track successful decision contexts
if (market.trend) {
conditions.trend = conditions.trend || {};
conditions.trend[market.trend] = (conditions.trend[market.trend] || 0) + 1;
}
if (market.timeOfDay) {
conditions.timeOfDay = conditions.timeOfDay || {};
const hour = market.timeOfDay;
conditions.timeOfDay[hour] = (conditions.timeOfDay[hour] || 0) + 1;
}
} catch (error) {
// Skip malformed data
}
});
return conditions;
}
identifyFailureReasons(failedDecisions) {
// Analyze what went wrong in failed decisions
return failedDecisions.map(decision => ({
reasoning: decision.reasoning,
distanceFromSL: decision.distanceFromSL,
outcome: decision.outcome,
pnlImpact: decision.pnlImpact
}));
}
async optimizeDistanceThresholds(decisions) {
// Analyze optimal distance thresholds for different decision types
const optimization = {};
// Group decisions by distance ranges
const ranges = [
{ min: 0, max: 1, label: 'emergency' },
{ min: 1, max: 2, label: 'highRisk' },
{ min: 2, max: 5, label: 'mediumRisk' },
{ min: 5, max: 100, label: 'safe' }
];
for (const range of ranges) {
const rangeDecisions = decisions.filter(d =>
d.distanceFromSL >= range.min && d.distanceFromSL < range.max
);
if (rangeDecisions.length >= 3) {
const successRate = rangeDecisions.filter(d => d.wasCorrect).length / rangeDecisions.length;
const avgScore = rangeDecisions.reduce((sum, d) => sum + (d.learningScore || 0), 0) / rangeDecisions.length;
optimization[`${range.label}Range`] = {
successRate: successRate * 100,
avgScore,
sampleSize: rangeDecisions.length,
optimalThreshold: this.calculateOptimalThreshold(rangeDecisions)
};
}
}
return optimization;
}
calculateOptimalThreshold(decisions) {
// Find the distance threshold that maximizes success rate
const sortedDecisions = decisions.sort((a, b) => a.distanceFromSL - b.distanceFromSL);
let bestThreshold = 1.0;
let bestScore = 0;
for (let i = 0; i < sortedDecisions.length - 1; i++) {
const threshold = sortedDecisions[i].distanceFromSL;
const aboveThreshold = sortedDecisions.slice(i);
const successRate = aboveThreshold.filter(d => d.wasCorrect).length / aboveThreshold.length;
if (successRate > bestScore && aboveThreshold.length >= 3) {
bestScore = successRate;
bestThreshold = threshold;
}
}
return bestThreshold;
}
async analyzeTimingPatterns(decisions) {
// Analyze when decisions work best (time of day, day of week, etc.)
const timing = {
timeOfDay: {},
dayOfWeek: {},
marketSession: {}
};
decisions.forEach(decision => {
try {
const market = JSON.parse(decision.marketConditions || '{}');
const wasCorrect = decision.wasCorrect;
if (market.timeOfDay !== undefined) {
const hour = market.timeOfDay;
timing.timeOfDay[hour] = timing.timeOfDay[hour] || { total: 0, correct: 0 };
timing.timeOfDay[hour].total++;
if (wasCorrect) timing.timeOfDay[hour].correct++;
}
if (market.dayOfWeek !== undefined) {
const day = market.dayOfWeek;
timing.dayOfWeek[day] = timing.dayOfWeek[day] || { total: 0, correct: 0 };
timing.dayOfWeek[day].total++;
if (wasCorrect) timing.dayOfWeek[day].correct++;
}
} catch (error) {
// Skip malformed data
}
});
return timing;
}
async findSimilarSituations(currentSituation) {
const { distanceFromSL, marketConditions } = currentSituation;
const tolerance = 0.5; // 0.5% tolerance for distance matching
const prisma = await this.getPrisma();
const decisions = await prisma.sLDecision.findMany({
where: {
status: 'ASSESSED',
distanceFromSL: {
gte: distanceFromSL - tolerance,
lte: distanceFromSL + tolerance
}
},
orderBy: { decisionTimestamp: 'desc' },
take: 20
});
return decisions;
}
getMostCommonAction(actions) {
const counts = {};
actions.forEach(action => {
counts[action] = (counts[action] || 0) + 1;
});
return Object.entries(counts).reduce((a, b) => counts[a] > counts[b] ? a : b)[0] || 'HOLD';
}
async analyzeMarketTrend(symbol) {
// Simplified trend analysis - in real implementation, use technical indicators
try {
const response = await fetch(`http://localhost:9001/api/automation/position-monitor`);
const data = await response.json();
if (data.success && data.monitor && data.monitor.position) {
const pnl = data.monitor.position.unrealizedPnl;
if (pnl > 0) return 'BULLISH';
if (pnl < 0) return 'BEARISH';
return 'SIDEWAYS';
}
} catch (error) {
// Fallback
}
return 'UNKNOWN';
}
async calculateVolatility(symbol) {
// Simplified volatility calculation
// In real implementation, calculate based on price history
return Math.random() * 0.1; // Mock volatility 0-10%
}
async getCurrentMarketConditions(symbol) {
return {
trend: await this.analyzeMarketTrend(symbol),
volatility: await this.calculateVolatility(symbol),
timeOfDay: new Date().getHours(),
dayOfWeek: new Date().getDay()
};
}
/**
* Generate learning insights report
*/
async generateLearningReport() {
try {
const patterns = await this.analyzeDecisionPatterns();
const report = {
timestamp: new Date().toISOString(),
summary: {
totalDecisions: this.decisionHistory.length,
successfulPatterns: patterns?.successfulPatterns?.length || 0,
learningThresholds: this.learningThresholds,
systemConfidence: this.calculateSystemConfidence()
},
insights: patterns,
recommendations: await this.generateSystemRecommendations(patterns)
};
await this.log(`📊 Learning report generated: ${report.summary.totalDecisions} decisions analyzed`);
return report;
} catch (error) {
await this.log(`❌ Error generating learning report: ${error.message}`);
return null;
}
}
calculateSystemConfidence() {
const recentDecisions = this.decisionHistory.slice(-20); // Last 20 decisions
if (recentDecisions.length < 5) return 0.3; // Low confidence with insufficient data
const successRate = recentDecisions.filter(d => d.wasCorrect).length / recentDecisions.length;
return Math.min(0.95, successRate + 0.1); // Cap at 95%
}
async generateSystemRecommendations(patterns) {
const recommendations = [];
if (patterns?.failurePatterns?.length > 0) {
patterns.failurePatterns.forEach(pattern => {
recommendations.push({
type: 'IMPROVEMENT',
priority: 'HIGH',
message: `Consider avoiding ${pattern.decisionType} decisions - only ${pattern.successRate.toFixed(1)}% success rate`,
actionable: true
});
});
}
if (patterns?.successfulPatterns?.length > 0) {
const bestPattern = patterns.successfulPatterns.reduce((best, current) =>
current.successRate > best.successRate ? current : best
);
recommendations.push({
type: 'OPTIMIZATION',
priority: 'MEDIUM',
message: `${bestPattern.decisionType} decisions show ${bestPattern.successRate.toFixed(1)}% success rate - consider using more often`,
actionable: true
});
}
return recommendations;
}
}
// Export for use in other modules
module.exports = StopLossDecisionLearner;
// Direct execution for testing
if (require.main === module) {
const learner = new StopLossDecisionLearner();
console.log('🧠 Stop Loss Decision Learning System');
console.log('📊 Ready to make your AI smarter with every decision!');
// Demo decision recording
setTimeout(async () => {
await learner.recordDecision({
tradeId: 'demo_001',
symbol: 'SOL-PERP',
decision: 'TIGHTEN_SL',
distanceFromSL: 2.3,
reasoning: 'Market showing weakness, reducing risk exposure',
currentPrice: 182.45,
confidenceScore: 0.8,
expectedOutcome: 'BETTER_RESULT'
});
const report = await learner.generateLearningReport();
console.log('\n📊 LEARNING REPORT:', JSON.stringify(report, null, 2));
}, 1000);
}