- Merged duplicate .github/copilot-instructions.instructions.md into main copilot-instructions.md - Combined development patterns, architecture details, and AI learning system docs - Added comprehensive references to all technical documentation files - Single source of truth for GitHub Copilot development guidance - Includes Docker workflow, cleanup systems, error handling patterns
20 KiB
GitHub Copilot Instructions for Trading Bot Development
🎯 Project Context & Architecture
This is an AI-powered trading automation system with advanced learning capabilities built with Next.js 15 App Router, TypeScript, Tailwind CSS, and integrated with Drift Protocol and Jupiter DEX for automated trading execution.
Core System Components
- Superior Parallel Screenshot System - 60% faster than sequential capture (71s vs 180s)
- AI Learning System - Adapts trading decisions based on outcomes with pattern recognition
- Orphaned Order Cleanup - Automatic cleanup when positions close via position monitor
- Position Monitoring - Frequent checks with integrated cleanup triggers
- Dual-Session Screenshot Automation - AI and DIY layouts with session persistence
- Robust Cleanup System - Prevents Chromium process accumulation
Critical File Relationships
app/api/automation/position-monitor/route.js → Monitors positions + triggers cleanup
lib/simplified-stop-loss-learner.js → AI learning core with pattern recognition
lib/superior-screenshot-service.ts → Parallel screenshot capture system
lib/enhanced-autonomous-risk-manager.js → Risk management with AI integration
lib/enhanced-screenshot-robust.ts → Guaranteed cleanup with finally blocks
lib/automated-cleanup-service.ts → Background process monitoring
🚀 Development Environment (Critical)
Docker Container Development (Required)
All development happens inside Docker containers using Docker Compose v2. Browser automation requires specific system dependencies only available in containerized environment.
IMPORTANT: Use Docker Compose v2 syntax - All commands use docker compose (with space) instead of docker-compose (with hyphen).
# Development environment - Docker Compose v2 dev setup
npm run docker:dev # Port 9001:3000, hot reload, debug mode
# Direct v2 command: docker compose -f docker-compose.dev.yml up --build
# Production environment
npm run docker:up # Port 9000:3000, optimized build
# Direct v2 command: docker compose -f docker-compose.prod.yml up --build
# Debugging commands
npm run docker:logs # View container logs
npm run docker:exec # Shell access for debugging inside container
Port Configuration:
- Development: External port
9001→ Internal port3000(http://localhost:9001) - Production: External port
9000→ Internal port3000(http://localhost:9000)
Container-First Development Workflow
Common Issue: File edits not reflecting in container due to volume mount sync issues.
Solution - Container Development Workflow:
# 1. Access running container for immediate edits
docker compose -f docker-compose.dev.yml exec app bash
# 2. Edit files directly in container (immediate effect)
nano /app/lib/enhanced-screenshot.ts
echo "console.log('Debug: immediate test');" >> /app/debug.js
# 3. Test changes immediately (no rebuild needed)
# Changes take effect instantly for hot reload
# 4. Once everything works, copy changes back to host
docker cp container_name:/app/modified-file.js ./modified-file.js
# 5. Commit successful changes to git BEFORE rebuilding
git add .
git commit -m "feat: implement working solution for [specific feature]"
git push origin development
# 6. Rebuild container for persistence
docker compose -f docker-compose.dev.yml down
docker compose -f docker-compose.dev.yml up --build -d
# 7. Final validation and commit completion
curl http://localhost:9001 # Verify functionality
git add . && git commit -m "chore: confirm container persistence" && git push
Git Branch Strategy (Required)
Primary development workflow:
developmentbranch: Use for all active development and feature workmainbranch: Stable, production-ready code only- Workflow: Develop on
development→ test thoroughly → commit progress → merge tomainwhen stable
# Standard development workflow with frequent commits
git checkout development # Always start here
git pull origin development # Get latest changes
# Make your changes and test in container...
# Commit working progress BEFORE rebuilding container
git add .
git commit -m "feat: [specific achievement] - tested and working"
git push origin development
# After successful container rebuild and validation
git add .
git commit -m "chore: confirm [feature] persistence after rebuild"
git push origin development
# Only merge to main when features are stable and tested
git checkout main
git merge development # When ready for production
git push origin main
🏗️ System Architecture
Dual-Session Screenshot Automation
- AI Layout:
Z1TzpUrf- RSI (top), EMAs, MACD (bottom) - DIY Layout:
vWVvjLhP- Stochastic RSI (top), VWAP, OBV (bottom) - Parallel browser sessions for multi-layout capture in
lib/enhanced-screenshot.ts - TradingView automation with session persistence in
lib/tradingview-automation.ts - Session data stored in
.tradingview-session/volume mount to avoid captchas
AI Analysis Pipeline
- OpenAI GPT-4o mini for cost-effective chart analysis (~$0.006 per analysis)
- Multi-layout comparison and consensus detection in
lib/ai-analysis.ts - Professional trading setups with exact entry/exit levels and risk management
- Layout-specific indicator analysis (RSI vs Stochastic RSI, MACD vs OBV)
Trading Integration
- Drift Protocol: Perpetual futures trading via
@drift-labs/sdk - Jupiter DEX: Spot trading on Solana
- Position management and P&L tracking in
lib/drift-trading-final.ts - Real-time account balance and collateral monitoring
Browser Process Management & Cleanup System
Critical Issue: Chromium processes accumulate during automated trading, consuming system resources over time.
Robust Cleanup Implementation:
-
Enhanced Screenshot Service (
lib/enhanced-screenshot-robust.ts)- Guaranteed cleanup via
finallyblocks in all browser operations - Active session tracking to prevent orphaned browsers
- Session cleanup tasks array for systematic teardown
- Guaranteed cleanup via
-
Automated Cleanup Service (
lib/automated-cleanup-service.ts)- Background monitoring service for orphaned processes
- Multiple kill strategies: graceful → force → system cleanup
- Periodic cleanup of temporary files and browser data
-
Aggressive Cleanup Utilities (
lib/aggressive-cleanup.ts)- System-level process killing for stubborn Chromium processes
- Port cleanup and temporary directory management
- Emergency cleanup functions for resource recovery
Implementation Patterns:
// Always use finally blocks for guaranteed cleanup
try {
const browser = await puppeteer.launch(options);
// ... browser operations
} finally {
// Guaranteed cleanup regardless of success/failure
await ensureBrowserCleanup(browser, sessionId);
await cleanupSessionTasks(sessionId);
}
// Background monitoring for long-running operations
const cleanupService = new AutomatedCleanupService();
cleanupService.startPeriodicCleanup(); // Every 10 minutes
API Route Structure
All core functionality exposed via Next.js API routes:
// Enhanced screenshot with progress tracking and robust cleanup
POST /api/enhanced-screenshot
{
symbol: "SOLUSD",
timeframe: "240",
layouts: ["ai", "diy"],
analyze: true
}
// Returns: { screenshots, analysis, sessionId }
// Note: Includes automatic Chromium process cleanup via finally blocks
// Drift trading endpoints
GET /api/balance # Account balance/collateral
POST /api/trading # Execute trades
GET /api/status # Trading status
GET /api/automation/position-monitor # Position monitoring with orphaned cleanup
POST /api/drift/cleanup-orders # Manual order cleanup
Progress Tracking System
Real-time operation tracking for long-running tasks:
lib/progress-tracker.tsmanages EventEmitter-based progress- SessionId-based tracking for multi-step operations
- Steps: init → auth → navigation → loading → capture → analysis
- Stream endpoint:
/api/progress/[sessionId]/stream
Page Structure & Multi-Timeframe Implementation
app/analysis/page.js- Original analysis page with multi-timeframe functionalityapp/automation/page.js- Original automation page (legacy, may have issues)app/automation-v2/page.js- NEW: Clean automation page with full multi-timeframe supportapp/automation/page-v2.js- Alternative implementation, same functionality as automation-v2
Multi-Timeframe Architecture Pattern:
// Standard timeframes array - use this exact format
const timeframes = ['5m', '15m', '30m', '1h', '2h', '4h', '1d'];
// State management for multi-timeframe selection
const [selectedTimeframes, setSelectedTimeframes] = useState(['1h', '4h']);
// Toggle function with proper array handling
const toggleTimeframe = (tf) => {
setSelectedTimeframes(prev =>
prev.includes(tf)
? prev.filter(t => t !== tf) // Remove if selected
: [...prev, tf] // Add if not selected
);
};
// Preset configurations for trading styles
const presets = {
scalping: ['5m', '15m', '1h'],
day: ['1h', '4h', '1d'],
swing: ['4h', '1d']
};
Component Architecture
app/layout.js- Root layout with gradient styling and navigationcomponents/Navigation.tsx- Multi-page navigation systemcomponents/AIAnalysisPanel.tsx- Multi-timeframe analysis interfacecomponents/Dashboard.tsx- Main trading dashboard with real Drift positionscomponents/AdvancedTradingPanel.tsx- Drift Protocol trading interface
Critical timeframe handling to avoid TradingView confusion:
// ALWAYS use minute values first, then alternatives
'4h': ['240', '240m', '4h', '4H'] // 240 minutes FIRST
'1h': ['60', '60m', '1h', '1H'] // 60 minutes FIRST
'15m': ['15', '15m']
Layout URL mappings for direct navigation:
const LAYOUT_URLS = {
'ai': 'Z1TzpUrf', // RSI + EMAs + MACD
'diy': 'vWVvjLhP' // Stochastic RSI + VWAP + OBV
}
🧠 AI Learning System Patterns
async generateLearningReport() {
// Return comprehensive learning status
return {
summary: { totalDecisions, systemConfidence, successRate },
insights: { thresholds, confidenceLevel },
recommendations: []
};
}
async getSmartRecommendation(requestData) {
// Analyze patterns and return AI recommendation
const { distanceFromSL, symbol, marketConditions } = requestData;
// Return: { action, confidence, reasoning }
}
async recordDecision(decisionData) {
// Log decision for learning with unique ID
const id = `decision_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
// Store in database for pattern analysis
}
async assessDecisionOutcome(outcomeData) {
// Update decision with actual result for learning
// Calculate if decision was correct based on outcome
}
Database Operations Best Practices:
// ALWAYS provide unique IDs for Prisma records
await prisma.ai_learning_data.create({
data: {
id: `${prefix}_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
// ... other fields
}
});
// Use correct import path
const { getDB } = require('./db'); // NOT './database-util'
Always Include These Functions in Learning Classes:
async generateLearningReport() {
// Return comprehensive learning status
return {
summary: { totalDecisions, systemConfidence, successRate },
insights: { thresholds, confidenceLevel },
recommendations: []
};
}
async getSmartRecommendation(requestData) {
// Analyze patterns and return AI recommendation
const { distanceFromSL, symbol, marketConditions } = requestData;
// Return: { action, confidence, reasoning }
}
async recordDecision(decisionData) {
// Log decision for learning with unique ID
const id = `decision_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
// Store in database for pattern analysis
}
async assessDecisionOutcome(outcomeData) {
// Update decision with actual result for learning
// Calculate if decision was correct based on outcome
}
Database Operations Best Practices:
// ALWAYS provide unique IDs for Prisma records
await prisma.ai_learning_data.create({
data: {
id: `${prefix}_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
// ... other fields
}
});
// Use correct import path
const { getDB } = require('./db'); // NOT './database-util'
🔧 Error Handling Patterns
🔧 Error Handling Patterns
Function Existence Checks:
// Always check if functions exist before calling
if (typeof this.learner.generateLearningReport === 'function') {
const report = await this.learner.generateLearningReport();
} else {
// Fallback to alternative method
const status = await this.learner.getLearningStatus();
}
Comprehensive Try-Catch:
try {
const result = await aiFunction();
return result;
} catch (error) {
await this.log(`❌ AI function error: ${error.message}`);
return fallbackResult(); // Always provide fallback
}
📊 Integration Patterns
// Always check if functions exist before calling
if (typeof this.learner.generateLearningReport === 'function') {
const report = await this.learner.generateLearningReport();
} else {
// Fallback to alternative method
const status = await this.learner.getLearningStatus();
}
Comprehensive Try-Catch:
try {
const result = await aiFunction();
return result;
} catch (error) {
await this.log(`❌ AI function error: ${error.message}`);
return fallbackResult(); // Always provide fallback
}
📊 Integration Patterns
Position Monitor Integration:
// When no position detected, check for orphaned orders
if (!result.hasPosition) {
console.log('📋 No active positions detected - checking for orphaned orders...');
try {
const ordersResponse = await fetch(`${baseUrl}/api/drift/orders`);
if (ordersResponse.ok) {
const ordersData = await ordersResponse.json();
if (ordersData.orders?.length > 0) {
// Trigger cleanup
const cleanupResponse = await fetch(`${baseUrl}/api/drift/cleanup-orders`, {
method: 'POST'
});
// Handle cleanup result
}
}
} catch (error) {
// Handle error gracefully
}
}
Parallel Processing for Screenshots:
// Use Promise.allSettled for parallel processing
const promises = timeframes.map(timeframe =>
captureTimeframe(timeframe, symbol, layoutType)
);
const results = await Promise.allSettled(promises);
// Process results with error isolation
results.forEach((result, index) => {
if (result.status === 'fulfilled') {
// Handle success
} else {
// Handle individual failure without breaking others
}
});
🎯 Performance Optimization Rules
Screenshot Capture:
- Always use parallel processing for multiple timeframes
- Reuse browser sessions to avoid login/captcha
- Isolate errors so one failure doesn't break others
- Prefer
Promise.allSettledoverPromise.all
Database Queries:
- Use indexed fields for frequent searches (symbol, createdAt)
- Batch operations when possible
- Include proper error handling for connection issues
Container Optimization:
- Check syntax before deployment:
node -c filename.js - Use health checks for monitoring
- Implement graceful shutdown handling
🧪 Testing Requirements
Always Include These Tests:
// Test AI learning functions
const learner = new SimplifiedStopLossLearner();
const report = await learner.generateLearningReport();
console.log('Learning report:', report.summary);
// Test API endpoints
const response = await fetch('/api/automation/position-monitor');
const result = await response.json();
console.log('Position monitor working:', result.success);
// Test error scenarios
try {
await riskyFunction();
} catch (error) {
console.log('Error handling working:', error.message);
}
🎨 UI/UX Patterns
Preset Configuration:
// Frontend presets MUST match backend exactly
const TRADING_PRESETS = {
scalp: ['5m', '15m', '30m'], // NOT ['5m', '15m', '1h']
day: ['1h', '2h'], // NOT ['1h', '4h', '1d']
swing: ['4h', '1D'],
extended: ['1m', '3m', '5m', '15m', '30m', '1h', '4h', '1D']
};
Status Display:
// Always provide detailed feedback
return {
success: true,
monitor: {
hasPosition: false,
orphanedOrderCleanup: {
triggered: true,
success: true,
message: 'Cleaned up 2 orphaned orders',
summary: { totalCanceled: 2 }
}
}
};
🔍 Debugging Strategies
Container Issues:
# Check for syntax errors
find . -name "*.js" -exec node -c {} \;
# Monitor logs for patterns
docker logs trader_dev --since="1m" | grep -E "(Error|unhandled|crash)"
# Test specific components
node test-learning-system.js
Integration Issues:
# Test API endpoints individually
curl -s http://localhost:9001/api/automation/position-monitor | jq .
# Verify database connectivity
node -e "const {getDB} = require('./lib/db'); getDB().then(() => console.log('DB OK'));"
🚨 Critical Anti-Patterns to Avoid
❌ Don't Do This:
// Missing error handling
const report = await this.learner.generateLearningReport(); // Will crash if function missing
// Redundant polling
setInterval(checkOrders, 60000); // When position monitor already runs frequently
// Frontend/backend preset mismatch
backend: ['5m', '15m', '1h']
frontend: ['5m', '15m', '30m'] // Will cause confusion
// Missing unique IDs
await prisma.create({ data: { symbol, timeframe } }); // Will fail validation
✅ Do This Instead:
// Defensive programming
if (typeof this.learner.generateLearningReport === 'function') {
try {
const report = await this.learner.generateLearningReport();
} catch (error) {
await this.log(`Report generation failed: ${error.message}`);
}
}
// Leverage existing infrastructure
// Add cleanup to existing position monitor instead of new polling
// Ensure consistency
const PRESETS = { scalp: ['5m', '15m', '30m'] }; // Same in frontend and backend
// Always provide unique IDs
const id = `${type}_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
🎯 Configuration Standards
Environment Variables:
// Always provide fallbacks
const apiKey = process.env.OPENAI_API_KEY || '';
if (!apiKey) {
throw new Error('OPENAI_API_KEY is required');
}
Next.js Configuration:
// Use new format, not deprecated
const nextConfig: NextConfig = {
serverExternalPackages: ['puppeteer-core'], // NOT experimental.serverComponentsExternalPackages
transpilePackages: ['next-font'],
typescript: { ignoreBuildErrors: true },
eslint: { ignoreDuringBuilds: true }
};
📈 Enhancement Guidelines
When adding new features:
- Check Existing Infrastructure - Can it be integrated vs creating new?
- Add Comprehensive Error Handling - Assume functions may not exist
- Include Fallback Mechanisms - System should work without AI/learning
- Test in Isolation - Create test scripts for new components
- Document Integration Points - How does it connect to existing systems?
- Maintain Consistency - Frontend and backend must match exactly
- Use Defensive Programming - Check before calling, handle gracefully
📚 Documentation References
Technical Documentation
ADVANCED_SYSTEM_KNOWLEDGE.md- Deep technical architecture, session management, cleanup systemsREADME.md- Main project overview with current feature status and setupAI_LEARNING_EXPLAINED.md- AI learning system implementation detailsDRIFT_FEEDBACK_LOOP_COMPLETE.md- Complete Drift trading integrationROBUST_CLEANUP_IMPLEMENTATION.md- Browser process cleanup system details
Implementation Guides
MULTI_LAYOUT_IMPLEMENTATION.md- Dual-session screenshot systemSESSION_PERSISTENCE.md- TradingView session managementDOCKER_AUTOMATION.md- Container development workflowDEVELOPMENT_GUIDE.md- Complete development setup instructions
Analysis & Troubleshooting
MULTI_LAYOUT_TROUBLESHOOTING.md- Screenshot automation debuggingCLEANUP_IMPROVEMENTS.md- Process management enhancementsSCREENSHOT_PATH_FIXES.md- Screenshot capture issue resolution
Follow these patterns to maintain system stability and avoid the complex debugging issues that were resolved in this session.