Files
trading_bot_v3/app/api/ai-analytics/route.js
mindesbunister f263cac55f Fix: Correct all database model names from camelCase to snake_case
- Fixed ai-analytics API: Created missing endpoint and corrected model names
- Fixed ai-learning-status.ts: Updated to use ai_learning_data and trades models
- Fixed batch-analysis route: Corrected ai_learning_data model references
- Fixed analysis-details route: Updated automation_sessions and trades models
- Fixed test scripts: Updated model names in check-learning-data.js and others
- Disabled conflicting route files to prevent Next.js confusion

All APIs now use correct snake_case model names matching Prisma schema:
- ai_learning_data (not aILearningData)
- automation_sessions (not automationSession)
- trades (not trade)

This resolves 'Unable to load REAL AI analytics' frontend errors.
2025-07-26 10:53:56 +02:00

147 lines
4.7 KiB
JavaScript

import { NextResponse } from 'next/server'
import { PrismaClient } from '@prisma/client'
const prisma = new PrismaClient()
export async function GET() {
try {
console.log('🔍 AI Analytics API called')
// Calculate date range for analytics (last 30 days)
const endDate = new Date()
const startDate = new Date()
startDate.setDate(startDate.getDate() - 30)
// Get learning data using correct snake_case model name
const learningData = await prisma.ai_learning_data.findMany({
where: {
createdAt: {
gte: startDate
}
},
orderBy: { createdAt: 'desc' },
take: 1000
})
// Get trade data
const trades = await prisma.trades.findMany({
where: {
createdAt: {
gte: startDate
}
},
orderBy: { createdAt: 'desc' },
take: 100
})
// Get automation sessions
const sessions = await prisma.automation_sessions.findMany({
where: {
createdAt: {
gte: startDate
}
},
orderBy: { createdAt: 'desc' },
take: 50
})
// Calculate analytics
const overview = {
totalLearningRecords: learningData.length,
totalTrades: trades.length,
totalSessions: sessions.length,
activeSessions: sessions.filter(s => s.status === 'ACTIVE').length
}
// Calculate improvements
const recentData = learningData.slice(0, Math.floor(learningData.length / 2))
const olderData = learningData.slice(Math.floor(learningData.length / 2))
const recentAvgConfidence = recentData.length > 0
? recentData.reduce((sum, d) => sum + (d.confidenceScore || 50), 0) / recentData.length
: 50
const olderAvgConfidence = olderData.length > 0
? olderData.reduce((sum, d) => sum + (d.confidenceScore || 50), 0) / olderData.length
: 50
const improvements = {
confidenceImprovement: recentAvgConfidence - olderAvgConfidence,
accuracyImprovement: null, // Would need actual outcome tracking
trend: recentAvgConfidence > olderAvgConfidence ? 'improving' : 'declining'
}
// Calculate P&L from trades
const completedTrades = trades.filter(t => t.status === 'COMPLETED')
const totalPnL = completedTrades.reduce((sum, t) => sum + (t.profit || 0), 0)
const winningTrades = completedTrades.filter(t => (t.profit || 0) > 0)
const winRate = completedTrades.length > 0 ? winningTrades.length / completedTrades.length : 0
const pnl = {
totalTrades: completedTrades.length,
totalPnL: totalPnL,
totalPnLPercent: 0, // Would need to calculate based on initial capital
winRate: winRate,
avgTradeSize: completedTrades.length > 0
? completedTrades.reduce((sum, t) => sum + (t.amount || 0), 0) / completedTrades.length
: 0
}
// Get current position (if any)
const latestTrade = trades.find(t => t.status === 'ACTIVE' || t.status === 'PENDING')
const currentPosition = latestTrade ? {
symbol: latestTrade.symbol,
side: latestTrade.side,
amount: latestTrade.amount,
entryPrice: latestTrade.price,
unrealizedPnL: 0 // Would need current market price to calculate
} : null
// Real-time metrics
const firstLearningRecord = learningData[learningData.length - 1]
const daysSinceStart = firstLearningRecord
? Math.ceil((Date.now() - new Date(firstLearningRecord.createdAt).getTime()) / (1000 * 60 * 60 * 24))
: 0
const realTimeMetrics = {
daysSinceAIStarted: daysSinceStart,
learningRecordsPerDay: daysSinceStart > 0 ? learningData.length / daysSinceStart : 0,
tradesPerDay: daysSinceStart > 0 ? trades.length / daysSinceStart : 0,
lastUpdate: new Date().toISOString(),
isLearningActive: sessions.some(s => s.status === 'ACTIVE')
}
// Learning proof
const learningProof = {
hasImprovement: improvements.confidenceImprovement > 0,
improvementDirection: improvements.trend,
confidenceChange: improvements.confidenceImprovement,
sampleSize: learningData.length,
isStatisticallySignificant: learningData.length > 50 && Math.abs(improvements.confidenceImprovement) > 5
}
const analytics = {
generated: new Date().toISOString(),
overview,
improvements,
pnl,
currentPosition,
realTimeMetrics,
learningProof
}
console.log('✅ AI Analytics generated successfully')
return NextResponse.json({
success: true,
data: analytics
})
} catch (error) {
console.error('Error generating AI analytics:', error)
return NextResponse.json({
success: false,
error: 'Failed to generate AI analytics',
details: error.message
}, { status: 500 })
}
}