Files
trading_bot_v3/AI_LEARNING_EXPLAINED.md
mindesbunister 118e0269f1 Fix automation startup issue and add AI learning documentation
- Fixed foreign key constraint violation in automation service
- Added user upsert to ensure user exists before creating automation session
- Enhanced error reporting in automation start API
- Added comprehensive AI learning system documentation
- Automation now starts successfully in simulation mode
2025-07-18 20:18:38 +02:00

11 KiB

🧠 AI Learning System - How the AI Gets Smarter from Trading History

📊 Overview: The Learning Loop

The AI learning system creates a continuous feedback loop where every trade and analysis makes the AI smarter. Here's how it works:

🔄 LEARNING CYCLE:
Screenshot → AI Analysis → Trade Decision → Outcome → Learning Data → Improved AI

🗄️ Database Architecture for Learning

1. AILearningData Table

-- Stores every AI analysis and its outcome
CREATE TABLE ai_learning_data (
  id                String   @id @default(cuid())
  userId            String
  sessionId         String?
  tradeId           String?
  analysisData      Json     // Complete AI analysis (GPT-4o response)
  marketConditions  Json     // Market context at time of analysis
  outcome           String?  // WIN, LOSS, BREAKEVEN (determined later)
  actualPrice       Float?   // What price actually happened
  predictedPrice    Float?   // What AI predicted would happen
  confidenceScore   Float?   // AI's confidence level (0-100)
  accuracyScore     Float?   // How accurate the prediction was
  timeframe         String   // 1h, 4h, 1d, etc.
  symbol            String   // SOLUSD, BTCUSD, etc.
  screenshot        String?  // Path to chart screenshot used
  feedbackData      Json?    // Additional learning feedback
  createdAt         DateTime @default(now())
  updatedAt         DateTime @updatedAt
)

2. Enhanced Trade Table

-- Stores actual trade outcomes for learning
CREATE TABLE trades (
  -- Trading data
  id            String    @id @default(cuid())
  symbol        String
  side          String    // BUY or SELL
  amount        Float
  price         Float
  
  -- AI Learning fields
  isAutomated   Boolean   @default(false)
  confidence    Float?    // AI confidence when trade was made
  marketSentiment String? // BULLISH, BEARISH, NEUTRAL
  outcome       String?   // WIN, LOSS, BREAKEVEN
  pnlPercent    Float?    // Actual profit/loss percentage
  actualRR      Float?    // Actual risk/reward ratio
  learningData  Json?     // Additional learning metadata
  
  -- Timing data
  executionTime DateTime?
  closedAt      DateTime?
  createdAt     DateTime  @default(now())
)

🔍 How Data is Collected

Step 1: Screenshot & Analysis Collection

// Every hour, the system:
1. Takes screenshot of TradingView chart
2. Sends to OpenAI GPT-4o-mini for analysis
3. Stores EVERYTHING in database:

await prisma.aILearningData.create({
  data: {
    userId: userId,
    symbol: 'SOLUSD',
    timeframe: '1h',
    screenshot: '/screenshots/SOLUSD_1h_20250718_143000.png',
    analysisData: JSON.stringify({
      // Complete GPT-4o analysis
      summary: "Strong bullish momentum with RSI oversold...",
      marketSentiment: "BULLISH",
      keyLevels: {
        support: [145.20, 142.80],
        resistance: [148.50, 151.00]
      },
      recommendation: "BUY",
      confidence: 78,
      reasoning: "Multiple bullish indicators aligned..."
    }),
    marketConditions: JSON.stringify({
      marketSentiment: "BULLISH",
      keyLevels: {...},
      timestamp: "2025-07-18T14:30:00Z"
    }),
    confidenceScore: 78,
    createdAt: new Date()
  }
})

Step 2: Trade Execution & Outcome Tracking

// When AI decides to trade:
1. Execute trade based on analysis
2. Store trade with AI metadata:

await prisma.trade.create({
  data: {
    userId: userId,
    symbol: 'SOLUSD',
    side: 'BUY',
    amount: 10.0,
    price: 146.50,
    isAutomated: true,
    confidence: 78,              // AI confidence
    marketSentiment: 'BULLISH',  // AI's market read
    stopLoss: 143.57,           // AI's risk management
    takeProfit: 152.43,         // AI's profit target
    executionTime: new Date(),
    // Outcome filled later when trade closes
    outcome: null,              // Will be WIN/LOSS/BREAKEVEN
    pnlPercent: null,           // Actual profit/loss %
    actualRR: null              // Actual risk/reward ratio
  }
})

Step 3: Outcome Determination

// When trade closes (hits stop loss or take profit):
1. Calculate actual outcome
2. Update learning data:

// Trade closed at $151.20 (profit!)
await prisma.trade.update({
  where: { id: tradeId },
  data: {
    outcome: 'WIN',
    pnlPercent: 3.2,           // Made 3.2% profit
    actualRR: 1.8,             // 1.8:1 risk/reward ratio
    closedAt: new Date(),
    learningData: JSON.stringify({
      entryAccuracy: 'GOOD',     // Entered at good price
      exitReason: 'TAKE_PROFIT', // Hit target
      marketBehavior: 'AS_EXPECTED' // Market moved as AI predicted
    })
  }
})

// Link back to AI analysis
await prisma.aILearningData.update({
  where: { id: analysisId },
  data: {
    outcome: 'WIN',
    actualPrice: 151.20,       // Where price actually went
    predictedPrice: 152.43,    // Where AI thought it would go
    accuracyScore: 0.89        // 89% accuracy (very close!)
  }
})

🧠 How the AI Learns

1. Pattern Recognition

// System analyzes historical data to find patterns:
const learningQuery = `
  SELECT 
    analysisData,
    marketConditions,
    outcome,
    accuracyScore,
    confidenceScore
  FROM ai_learning_data 
  WHERE outcome IS NOT NULL
  ORDER BY createdAt DESC
  LIMIT 1000
`

// AI learns:
- "When RSI < 30 AND market sentiment = BULLISH → 85% win rate"
- "Support level predictions accurate 78% of the time"
- "High confidence (>75%) trades win 82% of the time"
- "1h timeframe more accurate than 15m timeframe"

2. Accuracy Improvement

// System calculates accuracy metrics:
const accuracyMetrics = {
  overallAccuracy: 0.72,        // 72% of predictions correct
  highConfidenceAccuracy: 0.84, // 84% when AI is >75% confident
  lowConfidenceAccuracy: 0.58,  // 58% when AI is <50% confident
  
  // By timeframe
  timeframeAccuracy: {
    '1h': 0.78,   // 78% accurate on 1h charts
    '4h': 0.81,   // 81% accurate on 4h charts
    '15m': 0.62   // 62% accurate on 15m charts
  },
  
  // By market conditions
  marketAccuracy: {
    'BULLISH': 0.76,   // 76% accurate in bull markets
    'BEARISH': 0.74,   // 74% accurate in bear markets
    'NEUTRAL': 0.65    // 65% accurate in sideways markets
  }
}

3. Dynamic Learning Insights

// Real-time learning insights shown to user:
async function generateLearningInsights(userId: string) {
  const insights = await prisma.aILearningData.findMany({
    where: { userId, outcome: { not: null } },
    orderBy: { createdAt: 'desc' },
    take: 500
  })
  
  return {
    totalAnalyses: insights.length,
    avgAccuracy: calculateAverageAccuracy(insights),
    bestTimeframe: findBestTimeframe(insights),
    worstTimeframe: findWorstTimeframe(insights),
    commonFailures: identifyCommonFailures(insights),
    recommendations: generateRecommendations(insights)
  }
}

// Example output:
{
  totalAnalyses: 347,
  avgAccuracy: 0.73,
  bestTimeframe: '1h',        // 1h timeframe performs best
  worstTimeframe: '15m',      // 15m timeframe least accurate
  commonFailures: [
    'Low confidence predictions often wrong',
    'Resistance level predictions need improvement',
    'Volatile market conditions reduce accuracy'
  ],
  recommendations: [
    'Focus on 1h timeframe for better accuracy',
    'Only trade when confidence > 70%',
    'Avoid trading during high volatility periods'
  ]
}

🎯 Continuous Improvement Process

1. Real-Time Feedback Loop

Every Trade Cycle:
1. AI makes prediction → Store in database
2. Trade executes → Track outcome
3. Result known → Update learning data
4. System analyzes → Improve next prediction

2. Self-Improving Prompts

// AI prompt gets better based on learning:
const improvedPrompt = `
Based on ${totalAnalyses} previous analyses:
- Your accuracy is currently ${avgAccuracy * 100}%
- You perform best on ${bestTimeframe} timeframes
- Avoid trades when confidence < 70% (poor success rate)
- Focus on these successful patterns: ${successfulPatterns}

Now analyze this chart...
`

3. Adaptive Trading Strategy

// Trading logic adapts based on learning:
const tradeDecision = {
  shouldTrade: confidence > 70,           // Learned minimum confidence
  positionSize: calculateSize(accuracy),  // Size based on accuracy
  timeframe: '1h',                       // Best performing timeframe
  avoidConditions: ['HIGH_VOLATILITY']   // Learned to avoid these
}

📈 Expected Learning Progression

Week 1-2: Initial Learning

  • Accuracy: 40-50%
  • Confidence: Low, still learning basics
  • Patterns: Simple support/resistance recognition
  • Trades: Conservative, small amounts

Week 3-4: Pattern Recognition

  • Accuracy: 60-65%
  • Confidence: Improving, recognizing reliable patterns
  • Patterns: RSI/MACD combinations, trend recognition
  • Trades: More confident, better timing

Month 2+: Advanced Learning

  • Accuracy: 70-75%
  • Confidence: High confidence in proven patterns
  • Patterns: Complex multi-timeframe analysis
  • Trades: Sophisticated entries, better risk management

Month 3+: Expert Level

  • Accuracy: 75-80%
  • Confidence: Selective trading, high success rate
  • Patterns: Advanced market psychology, sentiment analysis
  • Trades: Professional-level execution, consistent profits

🔮 Future AI Enhancements

1. Machine Learning Integration

// Future: Train ML models on historical data
const mlModel = await trainModel({
  features: [
    'rsi', 'macd', 'volume', 'support_levels', 'resistance_levels',
    'market_sentiment', 'timeframe', 'volatility'
  ],
  labels: ['WIN', 'LOSS', 'BREAKEVEN'],
  trainingData: historicalLearningData
})

2. Multi-Asset Learning

// Learn patterns across different assets
const crossAssetLearning = {
  correlations: findAssetCorrelations(),
  sharedPatterns: identifySharedPatterns(),
  assetSpecificRules: generateAssetRules()
}

3. Market Regime Detection

// Adapt to different market conditions
const marketRegimes = {
  'BULL_MARKET': { accuracy: 0.82, strategy: 'aggressive' },
  'BEAR_MARKET': { accuracy: 0.78, strategy: 'defensive' },
  'SIDEWAYS': { accuracy: 0.65, strategy: 'range_bound' }
}

🎉 The Result: A Self-Improving AI Trader

The AI starts as a beginner but becomes an expert through:

  • Every trade teaches it something new
  • Continuous accuracy improvement
  • Adaptive strategy refinement
  • Pattern recognition mastery
  • Risk management optimization

This creates a trading AI that gets better every day, ultimately achieving professional-level performance while you sleep! 🚀💰