Files
trading_bot_v3/lib/automation-service-simple.ts
mindesbunister 700296e664 🔧 Improve cleanup timing correlation with analysis decisions
FIXES:
- Enhanced signalAnalysisCycleComplete with more intelligent cleanup logic
- Added active session detection to avoid killing processes during analysis
- Implemented graceful shutdown (SIGTERM) before force kill (SIGKILL)
- Only kills processes older than 2 minutes to avoid disrupting active analysis
- Added 10 second delay in runPostCycleCleanup to ensure trading decision is complete
- Improved process age filtering to prevent premature cleanup

- Cleanup now properly correlates with analysis completion + trading decision
- Reduced aggressive kills that were happening during active analysis
- Better CPU usage management through smarter process lifecycle
- Prevents cleanup from interfering with ongoing analysis work

This should significantly reduce the zombie process CPU usage issue by ensuring
cleanup only happens when analysis work is truly complete and decisions are finalized.
2025-07-19 00:53:25 +02:00

908 lines
30 KiB
TypeScript
Raw Blame History

import { PrismaClient } from '@prisma/client'
import { aiAnalysisService, AnalysisResult } from './ai-analysis'
import { jupiterDEXService } from './jupiter-dex-service'
import { enhancedScreenshotService } from './enhanced-screenshot-simple'
import { TradingViewCredentials } from './tradingview-automation'
import { progressTracker } from './progress-tracker'
import aggressiveCleanup from './aggressive-cleanup'
const prisma = new PrismaClient()
export interface AutomationConfig {
userId: string
mode: 'SIMULATION' | 'LIVE'
symbol: string
timeframe: string
tradingAmount: number
maxLeverage: number
stopLossPercent: number
takeProfitPercent: number
maxDailyTrades: number
riskPercentage: number
}
export interface AutomationStatus {
isActive: boolean
mode: 'SIMULATION' | 'LIVE'
symbol: string
timeframe: string
totalTrades: number
successfulTrades: number
winRate: number
totalPnL: number
lastAnalysis?: Date
lastTrade?: Date
nextScheduled?: Date
errorCount: number
lastError?: string
}
export class AutomationService {
private isRunning = false
private config: AutomationConfig | null = null
private intervalId: NodeJS.Timeout | null = null
private stats = {
totalTrades: 0,
successfulTrades: 0,
winRate: 0,
totalPnL: 0,
errorCount: 0,
lastError: null as string | null
}
async startAutomation(config: AutomationConfig): Promise<boolean> {
try {
if (this.isRunning) {
throw new Error('Automation is already running')
}
this.config = config
this.isRunning = true
console.log(`🤖 Starting automation for ${config.symbol} ${config.timeframe} in ${config.mode} mode`)
// Ensure user exists in database
await prisma.user.upsert({
where: { id: config.userId },
update: {},
create: {
id: config.userId,
email: `${config.userId}@example.com`,
name: config.userId,
createdAt: new Date(),
updatedAt: new Date()
}
})
// Delete any existing automation session for this user/symbol/timeframe
await prisma.automationSession.deleteMany({
where: {
userId: config.userId,
symbol: config.symbol,
timeframe: config.timeframe
}
})
// Create new automation session in database
await prisma.automationSession.create({
data: {
userId: config.userId,
status: 'ACTIVE',
mode: config.mode,
symbol: config.symbol,
timeframe: config.timeframe,
settings: {
tradingAmount: config.tradingAmount,
maxLeverage: config.maxLeverage,
stopLossPercent: config.stopLossPercent,
takeProfitPercent: config.takeProfitPercent,
maxDailyTrades: config.maxDailyTrades,
riskPercentage: config.riskPercentage
},
startBalance: config.tradingAmount,
currentBalance: config.tradingAmount,
createdAt: new Date(),
updatedAt: new Date()
}
})
// Start automation cycle
this.startAutomationCycle()
return true
} catch (error) {
console.error('Failed to start automation:', error)
this.stats.errorCount++
this.stats.lastError = error instanceof Error ? error.message : 'Unknown error'
return false
}
}
private startAutomationCycle(): void {
if (!this.config) return
// Get interval in milliseconds based on timeframe
const intervalMs = this.getIntervalFromTimeframe(this.config.timeframe)
console.log(`🔄 Starting automation cycle every ${intervalMs/1000} seconds`)
this.intervalId = setInterval(async () => {
if (this.isRunning && this.config) {
await this.runAutomationCycle()
}
}, intervalMs)
// Run first cycle immediately
this.runAutomationCycle()
}
private getIntervalFromTimeframe(timeframe: string): number {
const intervals: { [key: string]: number } = {
'1m': 60 * 1000,
'3m': 3 * 60 * 1000,
'5m': 5 * 60 * 1000,
'15m': 15 * 60 * 1000,
'30m': 30 * 60 * 1000,
'1h': 60 * 60 * 1000,
'2h': 2 * 60 * 60 * 1000,
'4h': 4 * 60 * 60 * 1000,
'1d': 24 * 60 * 60 * 1000
}
return intervals[timeframe] || intervals['1h'] // Default to 1 hour
}
private async runAutomationCycle(): Promise<void> {
if (!this.config) return
try {
console.log(`🔍 Running automation cycle for ${this.config.symbol} ${this.config.timeframe}`)
// Step 1: Check daily trade limit
const todayTrades = await this.getTodayTradeCount(this.config.userId)
if (todayTrades >= this.config.maxDailyTrades) {
console.log(`📊 Daily trade limit reached (${todayTrades}/${this.config.maxDailyTrades})`)
// Run cleanup even when trade limit is reached
await this.runPostCycleCleanup('trade_limit_reached')
return
}
// Step 2: Take screenshot and analyze
const analysisResult = await this.performAnalysis()
if (!analysisResult) {
console.log('❌ Analysis failed, skipping cycle')
// Run cleanup when analysis fails
await this.runPostCycleCleanup('analysis_failed')
return
}
// Step 3: Store analysis for learning
await this.storeAnalysisForLearning(analysisResult)
// Step 4: Update session with latest analysis
await this.updateSessionWithAnalysis(analysisResult)
// Step 5: Make trading decision
const tradeDecision = await this.makeTradeDecision(analysisResult)
if (!tradeDecision) {
console.log('📊 No trading opportunity found')
// Run cleanup when no trading opportunity
await this.runPostCycleCleanup('no_opportunity')
return
}
// Step 6: Execute trade
await this.executeTrade(tradeDecision)
// Run cleanup after successful trade execution
await this.runPostCycleCleanup('trade_executed')
} catch (error) {
console.error('Error in automation cycle:', error)
this.stats.errorCount++
this.stats.lastError = error instanceof Error ? error.message : 'Unknown error'
// Run cleanup on error
await this.runPostCycleCleanup('error')
}
}
private async runPostCycleCleanup(reason: string): Promise<void> {
console.log(`🧹 Running post-cycle cleanup (reason: ${reason})`)
// Longer delay to ensure all analysis processes AND trading decision have finished
await new Promise(resolve => setTimeout(resolve, 10000)) // 10 seconds
try {
// Signal that the complete analysis cycle is done
await aggressiveCleanup.signalAnalysisCycleComplete()
console.log(`✅ Post-cycle cleanup completed for: ${reason}`)
} catch (error) {
console.error('Error in post-cycle cleanup:', error)
}
}
private async performAnalysis(): Promise<{
screenshots: string[]
analysis: AnalysisResult | null
} | null> {
// Generate unique session ID for this analysis
const sessionId = `automation-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`
try {
console.log(`📸 Starting multi-timeframe analysis with dual layouts... (Session: ${sessionId})`)
// Create progress tracking session
const progressSteps = [
{ id: 'init', title: 'Initialize', description: 'Starting multi-timeframe analysis', status: 'pending' as const },
{ id: 'capture', title: 'Capture', description: 'Capturing screenshots for all timeframes', status: 'pending' as const },
{ id: 'analysis', title: 'Analysis', description: 'Running AI analysis on screenshots', status: 'pending' as const },
{ id: 'complete', title: 'Complete', description: 'Analysis complete', status: 'pending' as const }
]
progressTracker.createSession(sessionId, progressSteps)
progressTracker.updateStep(sessionId, 'init', 'active', 'Starting multi-timeframe analysis...')
// Multi-timeframe analysis: 15m, 1h, 2h, 4h
const timeframes = ['15', '1h', '2h', '4h']
const symbol = this.config!.symbol
console.log(`🔍 Analyzing ${symbol} across timeframes: ${timeframes.join(', ')} with AI + DIY layouts`)
progressTracker.updateStep(sessionId, 'init', 'completed', `Starting analysis for ${timeframes.length} timeframes`)
progressTracker.updateStep(sessionId, 'capture', 'active', 'Capturing screenshots...')
// Analyze each timeframe with both AI and DIY layouts
const multiTimeframeResults = await this.analyzeMultiTimeframeWithDualLayouts(symbol, timeframes, sessionId)
if (multiTimeframeResults.length === 0) {
console.log('❌ No multi-timeframe analysis results')
progressTracker.updateStep(sessionId, 'capture', 'error', 'No analysis results captured')
progressTracker.deleteSession(sessionId)
return null
}
progressTracker.updateStep(sessionId, 'capture', 'completed', `Captured ${multiTimeframeResults.length} timeframe analyses`)
progressTracker.updateStep(sessionId, 'analysis', 'active', 'Processing multi-timeframe results...')
// Process and combine multi-timeframe results
const combinedResult = this.combineMultiTimeframeAnalysis(multiTimeframeResults)
if (!combinedResult.analysis) {
console.log('❌ Failed to combine multi-timeframe analysis')
progressTracker.updateStep(sessionId, 'analysis', 'error', 'Failed to combine analysis results')
progressTracker.deleteSession(sessionId)
return null
}
console.log(`✅ Multi-timeframe analysis completed: ${combinedResult.analysis.recommendation} with ${combinedResult.analysis.confidence}% confidence`)
console.log(`📊 Timeframe alignment: ${this.analyzeTimeframeAlignment(multiTimeframeResults)}`)
progressTracker.updateStep(sessionId, 'analysis', 'completed', `Analysis complete: ${combinedResult.analysis.recommendation}`)
progressTracker.updateStep(sessionId, 'complete', 'completed', 'Multi-timeframe analysis finished')
// Clean up session after successful completion
setTimeout(() => {
progressTracker.deleteSession(sessionId)
}, 2000)
return combinedResult
} catch (error) {
console.error('Error performing multi-timeframe analysis:', error)
progressTracker.updateStep(sessionId, 'analysis', 'error', error instanceof Error ? error.message : 'Unknown error')
setTimeout(() => {
progressTracker.deleteSession(sessionId)
}, 5000)
return null
}
}
private async analyzeMultiTimeframeWithDualLayouts(
symbol: string,
timeframes: string[],
sessionId: string
): Promise<Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>> {
const results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }> = []
for (let i = 0; i < timeframes.length; i++) {
const timeframe = timeframes[i]
try {
console.log(`📊 Analyzing ${symbol} ${timeframe} with AI + DIY layouts... (${i + 1}/${timeframes.length})`)
// Update progress for timeframe
progressTracker.updateTimeframeProgress(sessionId, i + 1, timeframes.length, timeframe)
// Use the dual-layout configuration for each timeframe
const screenshotConfig = {
symbol: symbol,
timeframe: timeframe,
layouts: ['ai', 'diy'],
sessionId: sessionId
}
const result = await aiAnalysisService.captureAndAnalyzeWithConfig(screenshotConfig)
if (result.analysis) {
console.log(`${timeframe} analysis: ${result.analysis.recommendation} (${result.analysis.confidence}% confidence)`)
results.push({
symbol,
timeframe,
analysis: result.analysis
})
} else {
console.log(`${timeframe} analysis failed`)
results.push({
symbol,
timeframe,
analysis: null
})
}
// Small delay between captures to avoid overwhelming the system
await new Promise(resolve => setTimeout(resolve, 3000))
} catch (error) {
console.error(`Failed to analyze ${symbol} ${timeframe}:`, error)
results.push({
symbol,
timeframe,
analysis: null
})
}
}
return results
}
private combineMultiTimeframeAnalysis(results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>): {
screenshots: string[]
analysis: AnalysisResult | null
} {
const validResults = results.filter(r => r.analysis !== null)
if (validResults.length === 0) {
return { screenshots: [], analysis: null }
}
// Get the primary timeframe (1h) as base
const primaryResult = validResults.find(r => r.timeframe === '1h') || validResults[0]
const screenshots = validResults.length > 0 ? [primaryResult.timeframe] : []
// Calculate weighted confidence based on timeframe alignment
const alignment = this.calculateTimeframeAlignment(validResults)
const baseAnalysis = primaryResult.analysis!
// Adjust confidence based on timeframe alignment
const adjustedConfidence = Math.round(baseAnalysis.confidence * alignment.score)
// Create combined analysis with multi-timeframe reasoning
const combinedAnalysis: AnalysisResult = {
...baseAnalysis,
confidence: adjustedConfidence,
reasoning: `Multi-timeframe Dual-Layout Analysis (${results.map(r => r.timeframe).join(', ')}): ${baseAnalysis.reasoning}
📊 Each timeframe analyzed with BOTH AI layout (RSI, MACD, EMAs) and DIY layout (Stochastic RSI, VWAP, OBV)
⏱️ Timeframe Alignment: ${alignment.description}
<EFBFBD> Signal Strength: ${alignment.strength}
🎯 Confidence Adjustment: ${baseAnalysis.confidence}% → ${adjustedConfidence}% (${alignment.score >= 1 ? 'Enhanced' : 'Reduced'} due to timeframe ${alignment.score >= 1 ? 'alignment' : 'divergence'})
🔬 Analysis Details:
${validResults.map(r => `${r.timeframe}: ${r.analysis?.recommendation} (${r.analysis?.confidence}% confidence)`).join('\n')}`,
keyLevels: this.consolidateKeyLevels(validResults),
marketSentiment: this.consolidateMarketSentiment(validResults)
}
return {
screenshots,
analysis: combinedAnalysis
}
}
private calculateTimeframeAlignment(results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>): {
score: number
description: string
strength: string
} {
const recommendations = results.map(r => r.analysis?.recommendation).filter(Boolean)
const buySignals = recommendations.filter(r => r === 'BUY').length
const sellSignals = recommendations.filter(r => r === 'SELL').length
const holdSignals = recommendations.filter(r => r === 'HOLD').length
const total = recommendations.length
const maxSignals = Math.max(buySignals, sellSignals, holdSignals)
const alignmentRatio = maxSignals / total
let score = 1.0
let description = ''
let strength = ''
if (alignmentRatio >= 0.75) {
score = 1.2 // Boost confidence
description = `Strong alignment (${maxSignals}/${total} timeframes agree)`
strength = 'Strong'
} else if (alignmentRatio >= 0.5) {
score = 1.0 // Neutral
description = `Moderate alignment (${maxSignals}/${total} timeframes agree)`
strength = 'Moderate'
} else {
score = 0.8 // Reduce confidence
description = `Weak alignment (${maxSignals}/${total} timeframes agree)`
strength = 'Weak'
}
return { score, description, strength }
}
private consolidateKeyLevels(results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>): any {
const allLevels = results.map(r => r.analysis?.keyLevels).filter(Boolean)
if (allLevels.length === 0) return {}
// Use the 1h timeframe levels as primary, or first available
const primaryLevels = results.find(r => r.timeframe === '1h')?.analysis?.keyLevels || allLevels[0]
return {
...primaryLevels,
note: `Consolidated from ${allLevels.length} timeframes`
}
}
private consolidateMarketSentiment(results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>): 'BULLISH' | 'BEARISH' | 'NEUTRAL' {
const sentiments = results.map(r => r.analysis?.marketSentiment).filter(Boolean)
if (sentiments.length === 0) return 'NEUTRAL'
// Use the 1h timeframe sentiment as primary, or first available
const primarySentiment = results.find(r => r.timeframe === '1h')?.analysis?.marketSentiment || sentiments[0]
return primarySentiment || 'NEUTRAL'
}
private analyzeTimeframeAlignment(results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>): string {
const recommendations = results.map(r => ({
timeframe: r.timeframe,
recommendation: r.analysis?.recommendation,
confidence: r.analysis?.confidence || 0
}))
const summary = recommendations.map(r => `${r.timeframe}: ${r.recommendation} (${r.confidence}%)`).join(', ')
return summary
}
private async storeAnalysisForLearning(result: {
screenshots: string[]
analysis: AnalysisResult | null
}): Promise<void> {
try {
if (!result.analysis) return
await prisma.aILearningData.create({
data: {
userId: this.config!.userId,
symbol: this.config!.symbol,
timeframe: this.config!.timeframe,
screenshot: result.screenshots[0] || '',
analysisData: JSON.stringify(result.analysis),
marketConditions: JSON.stringify({
marketSentiment: result.analysis.marketSentiment,
keyLevels: result.analysis.keyLevels,
timestamp: new Date().toISOString()
}),
confidenceScore: result.analysis.confidence,
createdAt: new Date()
}
})
} catch (error) {
console.error('Error storing analysis for learning:', error)
}
}
private async updateSessionWithAnalysis(result: {
screenshots: string[]
analysis: AnalysisResult | null
}): Promise<void> {
try {
if (!result.analysis) return
// Store the analysis decision in a field that works for now
const analysisDecision = `${result.analysis.recommendation} with ${result.analysis.confidence}% confidence - ${result.analysis.summary}`
// Update the current session with the latest analysis
await prisma.automationSession.updateMany({
where: {
userId: this.config!.userId,
symbol: this.config!.symbol,
timeframe: this.config!.timeframe,
status: 'ACTIVE'
},
data: {
lastAnalysis: new Date(),
lastError: analysisDecision // Temporarily store analysis here
}
})
// Also log the analysis for debugging
console.log('📊 Analysis stored in database:', {
recommendation: result.analysis.recommendation,
confidence: result.analysis.confidence,
summary: result.analysis.summary
})
} catch (error) {
console.error('Failed to update session with analysis:', error)
}
}
private async makeTradeDecision(result: {
screenshots: string[]
analysis: AnalysisResult | null
}): Promise<any | null> {
try {
const analysis = result.analysis
if (!analysis) return null
// Only trade if confidence is high enough
if (analysis.confidence < 70) {
console.log(`📊 Confidence too low: ${analysis.confidence}%`)
return null
}
// Only trade if direction is clear
if (analysis.recommendation === 'HOLD') {
console.log('📊 No clear direction signal')
return null
}
// Calculate position size based on risk percentage
const positionSize = this.calculatePositionSize(analysis)
return {
direction: analysis.recommendation,
confidence: analysis.confidence,
positionSize,
stopLoss: this.calculateStopLoss(analysis),
takeProfit: this.calculateTakeProfit(analysis),
marketSentiment: analysis.marketSentiment
}
} catch (error) {
console.error('Error making trade decision:', error)
return null
}
}
private calculatePositionSize(analysis: any): number {
const baseAmount = this.config!.tradingAmount
const riskAdjustment = this.config!.riskPercentage / 100
const confidenceAdjustment = analysis.confidence / 100
return baseAmount * riskAdjustment * confidenceAdjustment
}
private calculateStopLoss(analysis: any): number {
// Use AI analysis stopLoss if available, otherwise calculate from entry price
if (analysis.stopLoss?.price) {
return analysis.stopLoss.price
}
const currentPrice = analysis.entry?.price || 150 // Default SOL price
const stopLossPercent = this.config!.stopLossPercent / 100
if (analysis.recommendation === 'BUY') {
return currentPrice * (1 - stopLossPercent)
} else {
return currentPrice * (1 + stopLossPercent)
}
}
private calculateTakeProfit(analysis: any): number {
// Use AI analysis takeProfit if available, otherwise calculate from entry price
if (analysis.takeProfits?.tp1?.price) {
return analysis.takeProfits.tp1.price
}
const currentPrice = analysis.entry?.price || 150 // Default SOL price
const takeProfitPercent = this.config!.takeProfitPercent / 100
if (analysis.recommendation === 'BUY') {
return currentPrice * (1 + takeProfitPercent)
} else {
return currentPrice * (1 - takeProfitPercent)
}
}
private async executeTrade(decision: any): Promise<void> {
try {
console.log(`🎯 Executing ${this.config!.mode} trade: ${decision.direction} ${decision.positionSize} ${this.config!.symbol}`)
let tradeResult: any
if (this.config!.mode === 'SIMULATION') {
// Execute simulation trade
tradeResult = await this.executeSimulationTrade(decision)
} else {
// Execute live trade via Jupiter
tradeResult = await this.executeLiveTrade(decision)
}
// Store trade in database
await this.storeTrade(decision, tradeResult)
// Update stats
this.updateStats(tradeResult)
console.log(`✅ Trade executed successfully: ${tradeResult.transactionId || 'SIMULATION'}`)
} catch (error) {
console.error('Error executing trade:', error)
this.stats.errorCount++
this.stats.lastError = error instanceof Error ? error.message : 'Trade execution failed'
}
}
private async executeSimulationTrade(decision: any): Promise<any> {
// Simulate trade execution with realistic parameters
const currentPrice = decision.currentPrice || 100 // Mock price
const slippage = Math.random() * 0.005 // 0-0.5% slippage
const executionPrice = currentPrice * (1 + (Math.random() > 0.5 ? slippage : -slippage))
return {
transactionId: `SIM_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
executionPrice,
amount: decision.positionSize,
direction: decision.direction,
status: 'COMPLETED',
timestamp: new Date(),
fees: decision.positionSize * 0.001, // 0.1% fee
slippage: slippage * 100
}
}
private async executeLiveTrade(decision: any): Promise<any> {
// Execute real trade via Jupiter DEX
const inputToken = decision.direction === 'BUY' ? 'USDC' : 'SOL'
const outputToken = decision.direction === 'BUY' ? 'SOL' : 'USDC'
const tokens = {
SOL: 'So11111111111111111111111111111111111111112',
USDC: 'EPjFWdd5AufqSSqeM2qN1xzybapC8G4wEGGkZwyTDt1v',
}
return await jupiterDEXService.executeSwap(
tokens[inputToken as keyof typeof tokens],
tokens[outputToken as keyof typeof tokens],
decision.positionSize,
50 // 0.5% slippage
)
}
private async storeTrade(decision: any, result: any): Promise<void> {
try {
await prisma.trade.create({
data: {
userId: this.config!.userId,
symbol: this.config!.symbol,
side: decision.direction,
amount: decision.positionSize,
price: result.executionPrice,
status: result.status,
driftTxId: result.transactionId || result.txId,
fees: result.fees || 0,
stopLoss: decision.stopLoss,
takeProfit: decision.takeProfit,
isAutomated: true,
tradingMode: this.config!.mode,
confidence: decision.confidence,
marketSentiment: decision.marketSentiment,
createdAt: new Date()
}
})
} catch (error) {
console.error('Error storing trade:', error)
}
}
private updateStats(result: any): void {
this.stats.totalTrades++
if (result.status === 'COMPLETED') {
this.stats.successfulTrades++
this.stats.winRate = (this.stats.successfulTrades / this.stats.totalTrades) * 100
// Update PnL (simplified calculation)
const pnl = result.amount * 0.01 * (Math.random() > 0.5 ? 1 : -1) // Random PnL for demo
this.stats.totalPnL += pnl
}
}
private async getTodayTradeCount(userId: string): Promise<number> {
const today = new Date()
today.setHours(0, 0, 0, 0)
const count = await prisma.trade.count({
where: {
userId,
isAutomated: true,
createdAt: {
gte: today
}
}
})
return count
}
async stopAutomation(): Promise<boolean> {
try {
this.isRunning = false
// Clear the interval if it exists
if (this.intervalId) {
clearInterval(this.intervalId)
this.intervalId = null
}
// Update database session status to STOPPED
if (this.config) {
await prisma.automationSession.updateMany({
where: {
userId: this.config.userId,
symbol: this.config.symbol,
timeframe: this.config.timeframe,
status: 'ACTIVE'
},
data: {
status: 'STOPPED',
updatedAt: new Date()
}
})
}
this.config = null
console.log('🛑 Automation stopped')
return true
} catch (error) {
console.error('Failed to stop automation:', error)
return false
}
}
async pauseAutomation(): Promise<boolean> {
try {
if (!this.isRunning) {
return false
}
this.isRunning = false
console.log('⏸️ Automation paused')
return true
} catch (error) {
console.error('Failed to pause automation:', error)
return false
}
}
async resumeAutomation(): Promise<boolean> {
try {
if (!this.config) {
return false
}
this.isRunning = true
console.log('▶️ Automation resumed')
return true
} catch (error) {
console.error('Failed to resume automation:', error)
return false
}
}
async getStatus(): Promise<AutomationStatus | null> {
try {
// Get the latest active automation session from database first
const session = await prisma.automationSession.findFirst({
where: { status: 'ACTIVE' },
orderBy: { createdAt: 'desc' }
})
if (!session) {
return null
}
// If we have a session but automation is not running in memory,
// it means the server was restarted but the session is still active
const isActiveInMemory = this.isRunning && this.config !== null
// Auto-restart automation if session exists but not running in memory
if (!isActiveInMemory) {
console.log('🔄 Found active session but automation not running, attempting auto-restart...')
await this.autoRestartFromSession(session)
}
return {
isActive: this.isRunning && this.config !== null,
mode: session.mode as 'SIMULATION' | 'LIVE',
symbol: session.symbol,
timeframe: session.timeframe,
totalTrades: session.totalTrades,
successfulTrades: session.successfulTrades,
winRate: session.winRate,
totalPnL: session.totalPnL,
errorCount: session.errorCount,
lastError: session.lastError || undefined,
lastAnalysis: session.lastAnalysis || undefined,
lastTrade: session.lastTrade || undefined,
nextScheduled: session.nextScheduled || undefined
}
} catch (error) {
console.error('Failed to get automation status:', error)
return null
}
}
private async autoRestartFromSession(session: any): Promise<void> {
try {
const settings = session.settings || {}
const config: AutomationConfig = {
userId: session.userId,
mode: session.mode,
symbol: session.symbol,
timeframe: session.timeframe,
tradingAmount: settings.tradingAmount || 100,
maxLeverage: settings.maxLeverage || 3,
stopLossPercent: settings.stopLossPercent || 2,
takeProfitPercent: settings.takeProfitPercent || 6,
maxDailyTrades: settings.maxDailyTrades || 5,
riskPercentage: settings.riskPercentage || 2
}
await this.startAutomation(config)
console.log('✅ Automation auto-restarted successfully')
} catch (error) {
console.error('Failed to auto-restart automation:', error)
}
}
async getLearningInsights(userId: string): Promise<{
totalAnalyses: number
avgAccuracy: number
bestTimeframe: string
worstTimeframe: string
commonFailures: string[]
recommendations: string[]
}> {
try {
// For now, return mock data
return {
totalAnalyses: 150,
avgAccuracy: 0.72,
bestTimeframe: '1h',
worstTimeframe: '15m',
commonFailures: [
'Low confidence predictions',
'Missed support/resistance levels',
'Timeframe misalignment'
],
recommendations: [
'Focus on 1h timeframe for better accuracy',
'Wait for higher confidence signals (>75%)',
'Use multiple timeframe confirmation'
]
}
} catch (error) {
console.error('Failed to get learning insights:', error)
return {
totalAnalyses: 0,
avgAccuracy: 0,
bestTimeframe: 'Unknown',
worstTimeframe: 'Unknown',
commonFailures: [],
recommendations: []
}
}
}
}
export const automationService = new AutomationService()