Files
trading_bot_v3/lib/simplified-stop-loss-learner-fixed.js
mindesbunister 71694ca660 📚 COMPREHENSIVE KNOWLEDGE DOCUMENTATION
ADVANCED SYSTEM KNOWLEDGE:
- Superior parallel screenshot system (60% performance gain)
- AI learning system architecture and decision flow
- Orphaned order cleanup integration patterns
- Critical technical fixes and troubleshooting guide
- Database schema best practices
- Memory leak prevention strategies

- AI learning system patterns and functions
- Error handling best practices for trading systems
- Integration patterns for position monitoring
- Performance optimization rules
- UI/UX consistency requirements
- Critical anti-patterns to avoid

- Added links to new knowledge base documents
- Comprehensive documentation structure
- Development guides and best practices
- Performance optimizations summary

- 60% screenshot performance improvement techniques
- AI learning system that adapts trading decisions
- Container stability and crash prevention
- Frontend-backend consistency requirements
- Integration strategies for existing infrastructure

This documentation preserves critical insights from complex debugging sessions and provides patterns for future development.
2025-07-26 15:12:57 +02:00

531 lines
17 KiB
JavaScript

/**
* Simplified Stop Loss Learning System
*
* Simplified approach focusing on essential learning patterns
* without complex statistical analysis.
*/
const { PrismaClient } = require('@prisma/client');
const getDB = require('./database-util');
class SimplifiedStopLossLearner {
constructor() {
this.learningThresholds = {
emergency: 1.0, // Emergency exit at 1% from SL
risk: 2.0, // High risk at 2% from SL
mediumRisk: 5.0 // Medium risk at 5% from SL
};
}
async log(message) {
console.log(`[${new Date().toISOString()}] 🧠 SL Learner: ${message}`);
}
/**
* Record a stop loss related decision for learning
*/
async recordDecision(decisionData) {
try {
const learningRecord = {
type: 'STOP_LOSS_DECISION',
tradeId: decisionData.tradeId,
symbol: decisionData.symbol,
decision: decisionData.decision,
distanceFromSL: decisionData.distanceFromSL,
reasoning: decisionData.reasoning,
marketConditions: decisionData.marketConditions,
expectedOutcome: decisionData.expectedOutcome,
timestamp: new Date().toISOString()
};
const prisma = await getDB();
const record = await prisma.ai_learning_data.create({
data: {
id: `sl_decision_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
userId: 'default-user',
symbol: decisionData.symbol,
timeframe: 'DECISION',
analysisData: JSON.stringify(learningRecord),
marketConditions: JSON.stringify(decisionData.marketConditions || {}),
confidenceScore: 50 // Neutral starting confidence
}
});
await this.log(`📝 Decision recorded: ${decisionData.decision} for ${decisionData.symbol} at ${decisionData.distanceFromSL}%`);
return record.id;
} catch (error) {
await this.log(`❌ Error recording decision: ${error.message}`);
return null;
}
}
/**
* Update the outcome of a previously recorded decision
*/
async assessDecisionOutcome(outcomeData) {
try {
const prisma = await getDB();
// Find the original decision record
const originalRecord = await prisma.ai_learning_data.findUnique({
where: { id: outcomeData.decisionId }
});
if (!originalRecord) {
await this.log(`⚠️ Original decision ${outcomeData.decisionId} not found`);
return false;
}
// Parse the original decision data
const originalDecision = JSON.parse(originalRecord.analysisData);
// Create outcome record with learning data
const outcomeRecord = {
type: 'STOP_LOSS_OUTCOME',
originalDecisionId: outcomeData.decisionId,
actualOutcome: outcomeData.actualOutcome,
timeToOutcome: outcomeData.timeToOutcome,
pnlImpact: outcomeData.pnlImpact,
wasCorrect: this.evaluateDecisionCorrectness(originalDecision, outcomeData),
learningData: {
originalDecision: originalDecision.decision,
distanceFromSL: originalDecision.distanceFromSL,
outcome: outcomeData.actualOutcome,
profitability: outcomeData.pnlImpact > 0 ? 'PROFITABLE' : 'LOSS'
},
timestamp: new Date().toISOString()
};
await prisma.ai_learning_data.create({
data: {
id: `sl_outcome_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
userId: 'default-user',
symbol: originalDecision.symbol,
timeframe: 'OUTCOME',
analysisData: JSON.stringify(outcomeRecord),
marketConditions: originalRecord.marketConditions,
confidenceScore: outcomeRecord.wasCorrect ? 75 : 25
}
});
await this.log(`✅ Outcome assessed for ${outcomeData.decisionId}: ${outcomeData.actualOutcome} (${outcomeRecord.wasCorrect ? 'CORRECT' : 'INCORRECT'})`);
// Update learning thresholds based on outcomes
await this.updateThresholdsFromOutcome(originalDecision, outcomeRecord);
return true;
} catch (error) {
await this.log(`❌ Error assessing outcome: ${error.message}`);
return false;
}
}
/**
* Evaluate if the original decision was correct based on outcome
*/
evaluateDecisionCorrectness(originalDecision, outcome) {
const decision = originalDecision.decision;
const actualOutcome = outcome.actualOutcome;
const pnlImpact = outcome.pnlImpact;
// Define what constitutes a "correct" decision
if (decision === 'EMERGENCY_EXIT' && (actualOutcome === 'STOPPED_OUT' || pnlImpact < -50)) {
return true; // Correctly identified emergency
}
if (decision === 'HOLD_POSITION' && pnlImpact > 0) {
return true; // Correctly held profitable position
}
if (decision === 'ADJUST_STOP_LOSS' && actualOutcome === 'TAKE_PROFIT') {
return true; // Adjustment led to profitable exit
}
return false;
}
/**
* Get smart recommendation based on learned patterns
*/
async getSmartRecommendation(requestData) {
try {
const { distanceFromSL, symbol, marketConditions } = requestData;
// Get historical data for similar situations
const prisma = await getDB();
const similarDecisions = await prisma.ai_learning_data.findMany({
where: {
symbol: symbol,
analysisData: {
string_contains: '"type":"STOP_LOSS_DECISION"'
}
},
orderBy: { createdAt: 'desc' },
take: 20
});
// Analyze patterns from similar situations
let recommendation = this.getBaseRecommendation(distanceFromSL);
if (similarDecisions.length >= 3) {
const learnedRecommendation = await this.analyzePatterns(similarDecisions, distanceFromSL);
if (learnedRecommendation) {
recommendation = learnedRecommendation;
}
}
await this.log(`🎯 Smart recommendation for ${symbol} at ${distanceFromSL}%: ${recommendation.action}`);
return recommendation;
} catch (error) {
await this.log(`❌ Error getting smart recommendation: ${error.message}`);
return this.getBaseRecommendation(distanceFromSL);
}
}
/**
* Get base recommendation using current thresholds
*/
getBaseRecommendation(distanceFromSL) {
if (distanceFromSL <= this.learningThresholds.emergency) {
return {
action: 'EMERGENCY_EXIT',
confidence: 0.8,
reasoning: `Very close to SL (${distanceFromSL}%), emergency exit recommended`
};
} else if (distanceFromSL <= this.learningThresholds.risk) {
return {
action: 'HIGH_ALERT',
confidence: 0.7,
reasoning: `Close to SL (${distanceFromSL}%), monitor closely`
};
} else if (distanceFromSL <= this.learningThresholds.mediumRisk) {
return {
action: 'MONITOR',
confidence: 0.6,
reasoning: `Moderate distance from SL (${distanceFromSL}%), continue monitoring`
};
} else {
return {
action: 'HOLD_POSITION',
confidence: 0.5,
reasoning: `Safe distance from SL (${distanceFromSL}%), maintain position`
};
}
}
/**
* Analyze historical patterns to improve recommendations
*/
async analyzePatterns(decisions, currentDistance) {
const outcomes = await this.getOutcomesForDecisions(decisions);
// Find decisions made at similar distances
const similarDistanceDecisions = decisions.filter(d => {
const data = JSON.parse(d.analysisData);
const distance = data.distanceFromSL;
return Math.abs(distance - currentDistance) <= 1.0; // Within 1%
});
if (similarDistanceDecisions.length < 2) {
return null; // Not enough similar data
}
// Analyze success rate of different actions at this distance
const actionSuccess = {};
for (const decision of similarDistanceDecisions) {
const decisionData = JSON.parse(decision.analysisData);
const action = decisionData.decision;
const outcome = outcomes.find(o => o.originalDecisionId === decision.id);
if (outcome) {
if (!actionSuccess[action]) {
actionSuccess[action] = { total: 0, successful: 0 };
}
actionSuccess[action].total++;
if (outcome.wasCorrect) {
actionSuccess[action].successful++;
}
}
}
// Find the action with highest success rate
let bestAction = null;
let bestSuccessRate = 0;
for (const [action, stats] of Object.entries(actionSuccess)) {
if (stats.total >= 2) { // Need at least 2 samples
const successRate = stats.successful / stats.total;
if (successRate > bestSuccessRate) {
bestSuccessRate = successRate;
bestAction = action;
}
}
}
if (bestAction && bestSuccessRate > 0.6) {
return {
action: bestAction,
confidence: bestSuccessRate,
reasoning: `Learned pattern: ${bestAction} successful ${Math.round(bestSuccessRate * 100)}% of time at this distance`
};
}
return null;
}
/**
* Get outcomes for a set of decisions
*/
async getOutcomesForDecisions(decisions) {
const prisma = await getDB();
const decisionIds = decisions.map(d => d.id);
const outcomes = await prisma.ai_learning_data.findMany({
where: {
analysisData: {
string_contains: '"type":"STOP_LOSS_OUTCOME"'
}
}
});
return outcomes.map(o => JSON.parse(o.analysisData))
.filter(outcome => decisionIds.includes(outcome.originalDecisionId));
}
/**
* Update learning thresholds based on outcome data
*/
async updateThresholdsFromOutcome(originalDecision, outcome) {
// Simple threshold adjustment based on outcomes
const distance = originalDecision.distanceFromSL;
const wasCorrect = outcome.wasCorrect;
if (!wasCorrect) {
// If decision was wrong, adjust thresholds slightly
if (originalDecision.decision === 'HOLD_POSITION' && outcome.actualOutcome === 'STOPPED_OUT') {
// We should have exited earlier - make thresholds more conservative
this.learningThresholds.emergency = Math.min(2.0, this.learningThresholds.emergency + 0.1);
this.learningThresholds.risk = Math.min(3.0, this.learningThresholds.risk + 0.1);
}
}
await this.log(`🔧 Thresholds updated: emergency=${this.learningThresholds.emergency}, risk=${this.learningThresholds.risk}`);
}
/**
* Get current learning status and statistics
*/
async analyzeDecisionPatterns() {
try {
const prisma = await getDB();
// Get recent decisions and outcomes
const decisions = await prisma.ai_learning_data.findMany({
where: {
analysisData: {
string_contains: '"type":"STOP_LOSS_DECISION"'
},
createdAt: {
gte: new Date(Date.now() - 7 * 24 * 60 * 60 * 1000) // Last 7 days
}
},
orderBy: { createdAt: 'desc' }
});
const outcomes = await prisma.ai_learning_data.findMany({
where: {
analysisData: {
string_contains: '"type":"STOP_LOSS_OUTCOME"'
},
createdAt: {
gte: new Date(Date.now() - 7 * 24 * 60 * 60 * 1000) // Last 7 days
}
}
});
// Analyze patterns
const patterns = {
totalDecisions: decisions.length,
totalOutcomes: outcomes.length,
successfulDecisions: outcomes.filter(o => JSON.parse(o.analysisData).wasCorrect).length,
successRate: outcomes.length > 0 ? outcomes.filter(o => JSON.parse(o.analysisData).wasCorrect).length / outcomes.length : 0,
learnedThresholds: this.learningThresholds
};
return patterns;
} catch (error) {
await this.log(`❌ Error analyzing patterns: ${error.message}`);
return {
totalDecisions: 0,
totalOutcomes: 0,
successfulDecisions: 0,
successRate: 0,
learnedThresholds: this.learningThresholds
};
}
}
/**
* Get learning status
*/
async getLearningStatus() {
try {
const prisma = await getDB();
const totalDecisions = await prisma.ai_learning_data.count({
where: {
analysisData: {
string_contains: '"type":"STOP_LOSS_DECISION"'
}
}
});
const recentDecisions = await prisma.ai_learning_data.count({
where: {
analysisData: {
string_contains: '"type":"STOP_LOSS_DECISION"'
},
createdAt: {
gte: new Date(Date.now() - 24 * 60 * 60 * 1000) // Last 24 hours
}
}
});
return {
totalDecisions,
recentDecisions,
thresholds: this.learningThresholds,
isActive: totalDecisions > 0
};
} catch (error) {
await this.log(`❌ Error getting learning status: ${error.message}`);
return {
totalDecisions: 0,
recentDecisions: 0,
thresholds: this.learningThresholds,
isActive: false
};
}
}
/**
* Generate comprehensive learning report
* Compatible implementation for enhanced-autonomous-risk-manager
*/
async generateLearningReport() {
try {
const status = await this.getLearningStatus();
const patterns = await this.analyzeDecisionPatterns();
// Calculate system confidence based on decisions made
const systemConfidence = this.calculateSystemConfidence(status.totalDecisions, status.recentDecisions, patterns.successRate);
const report = {
timestamp: new Date().toISOString(),
summary: {
totalDecisions: status.totalDecisions,
recentDecisions: status.recentDecisions,
successfulPatterns: patterns.successfulDecisions,
learningThresholds: this.learningThresholds,
systemConfidence: systemConfidence,
isActive: status.isActive,
successRate: patterns.successRate
},
insights: {
emergencyThreshold: this.learningThresholds.emergency,
riskThreshold: this.learningThresholds.risk,
mediumRiskThreshold: this.learningThresholds.mediumRisk,
confidenceLevel: systemConfidence > 0.7 ? 'HIGH' : systemConfidence > 0.4 ? 'MEDIUM' : 'LOW',
totalOutcomes: patterns.totalOutcomes,
decisionAccuracy: patterns.successRate
},
recommendations: this.generateSystemRecommendations(status, patterns)
};
await this.log(`📊 Learning report generated: ${report.summary.totalDecisions} decisions, ${(systemConfidence * 100).toFixed(1)}% confidence, ${(patterns.successRate * 100).toFixed(1)}% success rate`);
return report;
} catch (error) {
await this.log(`❌ Error generating learning report: ${error.message}`);
return {
timestamp: new Date().toISOString(),
summary: {
totalDecisions: 0,
recentDecisions: 0,
systemConfidence: 0.0,
isActive: false
},
error: error.message
};
}
}
/**
* Calculate system confidence based on learning data
*/
calculateSystemConfidence(totalDecisions, recentDecisions, successRate = 0) {
if (totalDecisions < 5) return 0.3; // Low confidence with insufficient data
if (totalDecisions < 20) return 0.4 + (successRate * 0.2); // Medium-low confidence boosted by success
if (totalDecisions < 50) return 0.6 + (successRate * 0.2); // Medium confidence boosted by success
// High confidence with lots of data, scaled by recent activity and success rate
const recentActivityFactor = Math.min(1.0, recentDecisions / 10);
const successFactor = successRate || 0.5; // Default to neutral if no success data
return Math.min(0.95, 0.7 + (recentActivityFactor * 0.1) + (successFactor * 0.15)); // Cap at 95%
}
/**
* Generate system recommendations based on learning status
*/
generateSystemRecommendations(status, patterns) {
const recommendations = [];
if (status.totalDecisions < 10) {
recommendations.push({
type: 'DATA_COLLECTION',
message: 'Need more decision data for reliable learning',
priority: 'HIGH'
});
}
if (status.recentDecisions < 3) {
recommendations.push({
type: 'ACTIVITY_LOW',
message: 'Recent trading activity is low - learning may be stale',
priority: 'MEDIUM'
});
}
if (patterns && patterns.successRate < 0.4 && patterns.totalOutcomes >= 5) {
recommendations.push({
type: 'THRESHOLD_ADJUSTMENT',
message: 'Low success rate detected - consider adjusting decision thresholds',
priority: 'HIGH'
});
}
if (status.totalDecisions >= 20 && patterns && patterns.successRate > 0.6) {
recommendations.push({
type: 'SYSTEM_PERFORMING',
message: 'System learning effectively with good success rate',
priority: 'LOW'
});
}
if (status.totalDecisions >= 50) {
recommendations.push({
type: 'OPTIMIZATION_READY',
message: 'Sufficient data available for advanced threshold optimization',
priority: 'LOW'
});
}
return recommendations;
}
}
module.exports = SimplifiedStopLossLearner;