Files
trading_bot_v3/app/api/ai-analytics/route.js
mindesbunister 9b6a393e06 🔧 CRITICAL FIX: Price Data Sync & Position Monitor Enhancement
Fixed major price data sync issues:
- Removed hardcoded price (77.63) from position monitor
- Added real-time oracle data instead of stale TWAP pricing
- Implemented cache-busting headers for fresh data
- Updated fallback prices to current market levels

- Real-time P&L tracking with trend indicators (📈📉➡️)
- Enhanced stop loss proximity alerts with color-coded risk levels
- Analysis progress indicators during automation cycles
- Performance metrics (runtime, cycles, trades, errors)
- Fresh data validation and improved error handling

- Price accuracy: 77.63 → 84.47 (matches Drift UI)
- P&L accuracy: -.91 → -.59 (correct calculation)
- Risk assessment: CRITICAL → MEDIUM (proper evaluation)
- Stop loss distance: 0.91% → 4.8% (safe distance)

- CLI monitor script with 8-second updates
- Web dashboard component (PositionMonitor.tsx)
- Real-time automation status tracking
- Database and error monitoring improvements

This fixes the automation showing false emergency alerts when
position was actually performing normally.
2025-07-25 23:33:06 +02:00

261 lines
8.1 KiB
JavaScript

import { NextResponse } from 'next/server';
import { PrismaClient } from '@prisma/client';
/**
* AI Learning Analytics API
*
* Provides real-time statistics about AI learning improvements and trading performance
*/
const prisma = new PrismaClient();
export async function GET(request) {
try {
const startDate = new Date('2025-07-24'); // When AI trading started
// Get learning data
const learningData = await prisma.aILearningData.findMany({
where: {
createdAt: {
gte: startDate
}
},
orderBy: { createdAt: 'asc' }
});
// Get trade data
const tradeData = await prisma.trade.findMany({
where: {
createdAt: {
gte: startDate
},
isAutomated: true
},
orderBy: { createdAt: 'asc' }
});
// Get automation sessions
const automationSessions = await prisma.automationSession.findMany({
where: {
createdAt: {
gte: startDate
}
},
orderBy: { createdAt: 'desc' }
});
// Calculate improvements
const improvements = calculateImprovements(learningData);
const pnlAnalysis = calculatePnLAnalysis(tradeData);
// Add real-time drift position data
let currentPosition = null;
try {
const HttpUtil = require('../../../lib/http-util');
const positionData = await HttpUtil.get('http://localhost:9001/api/automation/position-monitor');
if (positionData.success && positionData.monitor) {
currentPosition = {
hasPosition: positionData.monitor.hasPosition,
symbol: positionData.monitor.position?.symbol,
side: positionData.monitor.position?.side,
size: positionData.monitor.position?.size,
entryPrice: positionData.monitor.position?.entryPrice,
currentPrice: positionData.monitor.position?.currentPrice,
unrealizedPnl: positionData.monitor.position?.unrealizedPnl,
distanceFromStopLoss: positionData.monitor.stopLossProximity?.distancePercent,
riskLevel: positionData.monitor.riskLevel,
aiRecommendation: positionData.monitor.recommendation
};
}
} catch (positionError) {
console.log('Could not fetch position data:', positionError.message);
}
// Build response
const now = new Date();
const daysSinceStart = Math.ceil((now.getTime() - startDate.getTime()) / (1000 * 60 * 60 * 24));
const response = {
generated: now.toISOString(),
period: {
start: startDate.toISOString(),
end: now.toISOString(),
daysActive: daysSinceStart
},
overview: {
totalLearningRecords: learningData.length,
totalTrades: tradeData.length,
totalSessions: automationSessions.length,
activeSessions: automationSessions.filter(s => s.status === 'ACTIVE').length
},
improvements,
pnl: pnlAnalysis,
currentPosition,
realTimeMetrics: {
daysSinceAIStarted: daysSinceStart,
learningRecordsPerDay: Number((learningData.length / daysSinceStart).toFixed(1)),
tradesPerDay: Number((tradeData.length / daysSinceStart).toFixed(1)),
lastUpdate: now.toISOString(),
isLearningActive: automationSessions.filter(s => s.status === 'ACTIVE').length > 0
},
learningProof: {
hasImprovement: improvements?.confidenceImprovement > 0,
improvementDirection: improvements?.trend,
confidenceChange: improvements?.confidenceImprovement,
accuracyChange: improvements?.accuracyImprovement,
sampleSize: learningData.length,
isStatisticallySignificant: learningData.length > 100
}
};
return NextResponse.json(response);
} catch (error) {
console.error('Error generating AI analytics:', error);
return NextResponse.json({
error: 'Failed to generate analytics',
details: error.message
}, { status: 500 });
} finally {
await prisma.$disconnect();
}
}
function calculateImprovements(learningData) {
if (learningData.length < 10) {
return {
improvement: 0,
trend: 'INSUFFICIENT_DATA',
message: 'Need more learning data to calculate improvements',
confidenceImprovement: 0,
accuracyImprovement: null
};
}
// Split data into early vs recent periods
const midPoint = Math.floor(learningData.length / 2);
const earlyData = learningData.slice(0, midPoint);
const recentData = learningData.slice(midPoint);
// Calculate average confidence scores
const earlyConfidence = getAverageConfidence(earlyData);
const recentConfidence = getAverageConfidence(recentData);
// Calculate accuracy if outcomes are available
const earlyAccuracy = getAccuracy(earlyData);
const recentAccuracy = getAccuracy(recentData);
const confidenceImprovement = ((recentConfidence - earlyConfidence) / earlyConfidence) * 100;
const accuracyImprovement = earlyAccuracy && recentAccuracy ?
((recentAccuracy - earlyAccuracy) / earlyAccuracy) * 100 : null;
return {
confidenceImprovement: Number(confidenceImprovement.toFixed(2)),
accuracyImprovement: accuracyImprovement ? Number(accuracyImprovement.toFixed(2)) : null,
earlyPeriod: {
samples: earlyData.length,
avgConfidence: Number(earlyConfidence.toFixed(2)),
accuracy: earlyAccuracy ? Number(earlyAccuracy.toFixed(2)) : null
},
recentPeriod: {
samples: recentData.length,
avgConfidence: Number(recentConfidence.toFixed(2)),
accuracy: recentAccuracy ? Number(recentAccuracy.toFixed(2)) : null
},
trend: confidenceImprovement > 5 ? 'IMPROVING' :
confidenceImprovement < -5 ? 'DECLINING' : 'STABLE'
};
}
function calculatePnLAnalysis(tradeData) {
const analysis = {
totalTrades: tradeData.length,
totalPnL: 0,
totalPnLPercent: 0,
winningTrades: 0,
losingTrades: 0,
breakEvenTrades: 0,
avgTradeSize: 0,
winRate: 0,
avgWin: 0,
avgLoss: 0,
profitFactor: 0
};
if (tradeData.length === 0) {
return analysis;
}
let totalProfit = 0;
let totalLoss = 0;
let totalAmount = 0;
tradeData.forEach(trade => {
const pnl = trade.profit || 0;
const pnlPercent = trade.pnlPercent || 0;
const amount = trade.amount || 0;
analysis.totalPnL += pnl;
analysis.totalPnLPercent += pnlPercent;
totalAmount += amount;
if (pnl > 0) {
analysis.winningTrades++;
totalProfit += pnl;
} else if (pnl < 0) {
analysis.losingTrades++;
totalLoss += Math.abs(pnl);
} else {
analysis.breakEvenTrades++;
}
});
analysis.avgTradeSize = totalAmount / tradeData.length;
analysis.winRate = (analysis.winningTrades / tradeData.length) * 100;
analysis.avgWin = analysis.winningTrades > 0 ? totalProfit / analysis.winningTrades : 0;
analysis.avgLoss = analysis.losingTrades > 0 ? totalLoss / analysis.losingTrades : 0;
analysis.profitFactor = analysis.avgLoss > 0 ? analysis.avgWin / analysis.avgLoss : 0;
// Round numbers
Object.keys(analysis).forEach(key => {
if (typeof analysis[key] === 'number') {
analysis[key] = Number(analysis[key].toFixed(4));
}
});
return analysis;
}
function getAverageConfidence(data) {
const confidenceScores = data
.map(d => {
// Handle confidence stored as percentage (75.0) vs decimal (0.75)
let confidence = d.confidenceScore || d.analysisData?.confidence || 0.5;
if (confidence > 1) {
confidence = confidence / 100; // Convert percentage to decimal
}
return confidence;
})
.filter(score => score > 0);
return confidenceScores.length > 0 ?
confidenceScores.reduce((a, b) => a + b, 0) / confidenceScores.length : 0.5;
}
function getAccuracy(data) {
const withOutcomes = data.filter(d => d.outcome && d.accuracyScore);
if (withOutcomes.length === 0) return null;
const avgAccuracy = withOutcomes.reduce((sum, d) => sum + (d.accuracyScore || 0), 0) / withOutcomes.length;
return avgAccuracy;
}
export async function POST(request) {
return NextResponse.json({
success: true,
message: 'Analytics refreshed',
timestamp: new Date().toISOString()
});
}