- Fixed network connectivity and live trading mode - Updated Drift SDK integration with proper API methods - Fixed BN type conversions and minimum order size - Fixed stop loss & take profit conditional orders - Complete risk management system now functional
320 lines
11 KiB
JavaScript
320 lines
11 KiB
JavaScript
import { NextResponse } from 'next/server'
|
|
import { enhancedScreenshotService } from '../../../lib/enhanced-screenshot'
|
|
import { aiAnalysisService } from '../../../lib/ai-analysis'
|
|
import { progressTracker } from '../../../lib/progress-tracker'
|
|
|
|
import { PrismaClient } from '@prisma/client';
|
|
|
|
const prisma = new PrismaClient();
|
|
|
|
// Store analysis results for AI learning
|
|
async function storeAnalysisForLearning(symbol, analysis) {
|
|
try {
|
|
console.log('💾 Storing analysis for AI learning...')
|
|
|
|
// Extract market conditions for learning
|
|
const marketConditions = {
|
|
marketSentiment: analysis.marketSentiment || 'NEUTRAL',
|
|
keyLevels: analysis.keyLevels || {},
|
|
trends: analysis.trends || {},
|
|
timeframes: ['5m', '15m', '30m'], // Multi-timeframe analysis
|
|
timestamp: new Date().toISOString()
|
|
}
|
|
|
|
await prisma.aILearningData.create({
|
|
data: {
|
|
userId: 'default-user', // Use same default user as ai-learning-status
|
|
symbol: symbol,
|
|
timeframe: 'MULTI', // Indicates multi-timeframe batch analysis
|
|
analysisData: JSON.stringify(analysis),
|
|
marketConditions: JSON.stringify(marketConditions),
|
|
confidenceScore: Math.round(analysis.confidence || 50),
|
|
createdAt: new Date()
|
|
}
|
|
})
|
|
|
|
console.log(`✅ Analysis stored for learning: ${symbol} - ${analysis.recommendation || 'HOLD'} (${analysis.confidence || 50}% confidence)`)
|
|
} catch (error) {
|
|
console.error('❌ Failed to store analysis for learning:', error)
|
|
}
|
|
}
|
|
|
|
export async function POST(request) {
|
|
try {
|
|
const body = await request.json()
|
|
const { symbol, layouts, timeframes, selectedLayouts, analyze = true } = body
|
|
|
|
console.log('📊 Batch analysis request:', { symbol, layouts, timeframes, selectedLayouts, analyze })
|
|
|
|
// Validate inputs
|
|
if (!symbol || !timeframes || !Array.isArray(timeframes) || timeframes.length === 0) {
|
|
return NextResponse.json(
|
|
{ success: false, error: 'Invalid request: symbol and timeframes array required' },
|
|
{ status: 400 }
|
|
)
|
|
}
|
|
|
|
// Generate unique session ID for progress tracking
|
|
const sessionId = `batch_analysis_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`
|
|
console.log('🔍 Created batch analysis session ID:', sessionId)
|
|
|
|
// Create progress tracking session with initial steps
|
|
const initialSteps = [
|
|
{
|
|
id: 'init',
|
|
title: 'Initializing Batch Analysis',
|
|
description: 'Starting multi-timeframe analysis...',
|
|
status: 'pending'
|
|
},
|
|
{
|
|
id: 'auth',
|
|
title: 'TradingView Authentication',
|
|
description: 'Logging into TradingView accounts',
|
|
status: 'pending'
|
|
},
|
|
{
|
|
id: 'navigation',
|
|
title: 'Chart Navigation',
|
|
description: 'Navigating to chart layouts',
|
|
status: 'pending'
|
|
},
|
|
{
|
|
id: 'loading',
|
|
title: 'Chart Data Loading',
|
|
description: 'Waiting for chart data and indicators',
|
|
status: 'pending'
|
|
},
|
|
{
|
|
id: 'capture',
|
|
title: 'Screenshot Capture',
|
|
description: `Capturing screenshots for ${timeframes.length} timeframes`,
|
|
status: 'pending'
|
|
},
|
|
{
|
|
id: 'analysis',
|
|
title: 'AI Analysis',
|
|
description: 'Analyzing all screenshots with AI',
|
|
status: 'pending'
|
|
}
|
|
]
|
|
|
|
// Create the progress session
|
|
progressTracker.createSession(sessionId, initialSteps)
|
|
|
|
// Prepare base configuration
|
|
const baseConfig = {
|
|
symbol: symbol || 'BTCUSD',
|
|
layouts: layouts || selectedLayouts || ['ai', 'diy'],
|
|
sessionId,
|
|
credentials: {
|
|
email: process.env.TRADINGVIEW_EMAIL,
|
|
password: process.env.TRADINGVIEW_PASSWORD
|
|
}
|
|
}
|
|
|
|
console.log('🔧 Base config:', baseConfig)
|
|
|
|
let allScreenshots = []
|
|
const screenshotResults = []
|
|
|
|
try {
|
|
// STEP 1: Collect ALL screenshots from ALL timeframes FIRST
|
|
console.log(`🔄 Starting batch screenshot collection for ${timeframes.length} timeframes...`)
|
|
|
|
progressTracker.updateStep(sessionId, 'init', 'active', 'Starting batch screenshot collection...')
|
|
|
|
for (let i = 0; i < timeframes.length; i++) {
|
|
const timeframe = timeframes[i]
|
|
const timeframeLabel = getTimeframeLabel(timeframe)
|
|
|
|
console.log(`📸 Collecting screenshots for ${symbol} ${timeframeLabel} (${i + 1}/${timeframes.length})`)
|
|
|
|
// Update progress for current timeframe
|
|
progressTracker.updateStep(sessionId, 'capture', 'active',
|
|
`Capturing ${timeframeLabel} screenshots (${i + 1}/${timeframes.length})`
|
|
)
|
|
|
|
try {
|
|
const config = {
|
|
...baseConfig,
|
|
timeframe: timeframe,
|
|
sessionId: i === 0 ? sessionId : undefined // Only track progress for first timeframe
|
|
}
|
|
|
|
// Capture screenshots WITHOUT analysis
|
|
const screenshots = await enhancedScreenshotService.captureWithLogin(config)
|
|
|
|
if (screenshots && screenshots.length > 0) {
|
|
console.log(`✅ Captured ${screenshots.length} screenshots for ${timeframeLabel}`)
|
|
|
|
// Store screenshots with metadata
|
|
const screenshotData = {
|
|
timeframe: timeframe,
|
|
timeframeLabel: timeframeLabel,
|
|
screenshots: screenshots,
|
|
success: true
|
|
}
|
|
|
|
screenshotResults.push(screenshotData)
|
|
allScreenshots.push(...screenshots)
|
|
|
|
} else {
|
|
console.warn(`⚠️ No screenshots captured for ${timeframeLabel}`)
|
|
screenshotResults.push({
|
|
timeframe: timeframe,
|
|
timeframeLabel: timeframeLabel,
|
|
screenshots: [],
|
|
success: false,
|
|
error: 'No screenshots captured'
|
|
})
|
|
}
|
|
|
|
} catch (timeframeError) {
|
|
console.error(`❌ Error capturing ${timeframeLabel}:`, timeframeError)
|
|
screenshotResults.push({
|
|
timeframe: timeframe,
|
|
timeframeLabel: timeframeLabel,
|
|
screenshots: [],
|
|
success: false,
|
|
error: timeframeError.message
|
|
})
|
|
}
|
|
|
|
// Small delay between captures
|
|
if (i < timeframes.length - 1) {
|
|
await new Promise(resolve => setTimeout(resolve, 1000))
|
|
}
|
|
}
|
|
|
|
console.log(`📊 Batch screenshot collection completed: ${allScreenshots.length} total screenshots`)
|
|
progressTracker.updateStep(sessionId, 'capture', 'completed', `Captured ${allScreenshots.length} total screenshots`)
|
|
|
|
// STEP 2: Send ALL screenshots to AI for comprehensive analysis
|
|
let analysis = null
|
|
|
|
if (analyze && allScreenshots.length > 0) {
|
|
console.log(`🤖 Starting comprehensive AI analysis on ${allScreenshots.length} screenshots...`)
|
|
progressTracker.updateStep(sessionId, 'analysis', 'active', 'Running comprehensive AI analysis...')
|
|
|
|
try {
|
|
if (allScreenshots.length === 1) {
|
|
analysis = await aiAnalysisService.analyzeScreenshot(allScreenshots[0])
|
|
} else {
|
|
analysis = await aiAnalysisService.analyzeMultipleScreenshots(allScreenshots)
|
|
}
|
|
|
|
if (analysis) {
|
|
console.log('✅ Comprehensive AI analysis completed')
|
|
progressTracker.updateStep(sessionId, 'analysis', 'completed', 'AI analysis completed successfully!')
|
|
|
|
// Store analysis for learning
|
|
await storeAnalysisForLearning(symbol, analysis)
|
|
} else {
|
|
console.log('⏳ AI analysis returned null (possibly rate limited) - continuing without analysis')
|
|
progressTracker.updateStep(sessionId, 'analysis', 'skipped', 'AI analysis skipped due to rate limits or other issues')
|
|
analysis = null
|
|
}
|
|
|
|
} catch (analysisError) {
|
|
console.error('❌ AI analysis failed:', analysisError)
|
|
progressTracker.updateStep(sessionId, 'analysis', 'error', `AI analysis failed: ${analysisError.message}`)
|
|
|
|
// Don't fail the entire request - return screenshots without analysis
|
|
analysis = null
|
|
}
|
|
}
|
|
|
|
// STEP 3: Format comprehensive results
|
|
const result = {
|
|
success: true,
|
|
type: 'batch_analysis',
|
|
sessionId,
|
|
timestamp: Date.now(),
|
|
symbol: symbol,
|
|
timeframes: timeframes,
|
|
layouts: baseConfig.layouts,
|
|
summary: `Batch analysis completed for ${timeframes.length} timeframes`,
|
|
totalScreenshots: allScreenshots.length,
|
|
screenshotResults: screenshotResults,
|
|
allScreenshots: allScreenshots.map(path => ({
|
|
url: `/screenshots/${path.split('/').pop()}`,
|
|
timestamp: Date.now()
|
|
})),
|
|
analysis: analysis, // Comprehensive analysis of ALL screenshots
|
|
message: `Successfully captured ${allScreenshots.length} screenshots${analysis ? ' with comprehensive AI analysis' : ''}`
|
|
}
|
|
|
|
// Clean up session
|
|
setTimeout(() => progressTracker.deleteSession(sessionId), 2000)
|
|
|
|
// Trigger post-analysis cleanup in development mode
|
|
if (process.env.NODE_ENV === 'development') {
|
|
try {
|
|
const { default: aggressiveCleanup } = await import('../../../lib/aggressive-cleanup')
|
|
// Run cleanup in background, don't block the response
|
|
aggressiveCleanup.runPostAnalysisCleanup().catch(console.error)
|
|
} catch (cleanupError) {
|
|
console.error('Error triggering post-batch-analysis cleanup:', cleanupError)
|
|
}
|
|
}
|
|
|
|
return NextResponse.json(result)
|
|
|
|
} catch (error) {
|
|
console.error('❌ Batch analysis failed:', error)
|
|
progressTracker.updateStep(sessionId, 'analysis', 'error', `Batch analysis failed: ${error.message}`)
|
|
setTimeout(() => progressTracker.deleteSession(sessionId), 5000)
|
|
|
|
return NextResponse.json(
|
|
{
|
|
success: false,
|
|
error: 'Batch analysis failed',
|
|
message: error.message,
|
|
sessionId: sessionId
|
|
},
|
|
{ status: 500 }
|
|
)
|
|
}
|
|
|
|
} catch (error) {
|
|
console.error('Batch analysis API error:', error)
|
|
return NextResponse.json(
|
|
{
|
|
success: false,
|
|
error: 'Batch analysis failed',
|
|
message: error.message
|
|
},
|
|
{ status: 500 }
|
|
)
|
|
}
|
|
}
|
|
|
|
// Helper function to get timeframe label
|
|
function getTimeframeLabel(timeframe) {
|
|
const timeframes = [
|
|
{ label: '1m', value: '1' },
|
|
{ label: '5m', value: '5' },
|
|
{ label: '15m', value: '15' },
|
|
{ label: '30m', value: '30' },
|
|
{ label: '1h', value: '60' },
|
|
{ label: '2h', value: '120' },
|
|
{ label: '4h', value: '240' },
|
|
{ label: '1d', value: 'D' },
|
|
{ label: '1w', value: 'W' },
|
|
{ label: '1M', value: 'M' },
|
|
]
|
|
|
|
return timeframes.find(t => t.value === timeframe)?.label || timeframe
|
|
}
|
|
|
|
|
|
|
|
export async function GET() {
|
|
return NextResponse.json({
|
|
message: 'Batch Analysis API - use POST method for multi-timeframe analysis',
|
|
endpoints: {
|
|
POST: '/api/batch-analysis - Run multi-timeframe analysis with parameters'
|
|
}
|
|
})
|
|
}
|