Files
trading_bot_v3/lib/automation-service-simple.ts
mindesbunister d7a1b96a80 fix: Resolve win rate and P&L discrepancies between Status and AI Learning sections
- Fixed analysis-details API to use stored profit field as fallback when exit prices missing
- Updated UI to use Status API data instead of calculating from limited recent trades
- Modified AI Learning Status to use real database trade data instead of demo numbers
- Enhanced price monitor with automatic trade closing logic for TP/SL hits
- Modified automation service to create trades with OPEN status for proper monitoring
- Added test scripts for creating OPEN trades and validating monitoring system

Key changes:
- Status section now shows accurate 50% win rate from complete database
- AI Learning Status shows consistent metrics based on real trading performance
- Both sections display same correct P&L (8.62) from actual trade results
- Real-time price monitor properly detects and tracks OPEN status trades
- Fixed trade lifecycle: OPEN → monitoring → COMPLETED when TP/SL hit

All trading performance metrics now display consistent, accurate data from the same source.
2025-07-21 12:56:14 +02:00

1096 lines
39 KiB
TypeScript
Raw Blame History

import { PrismaClient } from '@prisma/client'
import { aiAnalysisService, AnalysisResult } from './ai-analysis'
import { jupiterDEXService } from './jupiter-dex-service'
import { enhancedScreenshotService } from './enhanced-screenshot-simple'
import { TradingViewCredentials } from './tradingview-automation'
import { progressTracker, ProgressStatus } from './progress-tracker'
import aggressiveCleanup from './aggressive-cleanup'
import { analysisCompletionFlag } from './analysis-completion-flag'
import priceMonitorService from './price-monitor'
const prisma = new PrismaClient()
export interface AutomationConfig {
userId: string
mode: 'SIMULATION' | 'LIVE'
symbol: string
timeframe: string
tradingAmount: number
maxLeverage: number
stopLossPercent: number
takeProfitPercent: number
maxDailyTrades: number
riskPercentage: number
}
export interface AutomationStatus {
isActive: boolean
mode: 'SIMULATION' | 'LIVE'
symbol: string
timeframe: string
totalTrades: number
successfulTrades: number
winRate: number
totalPnL: number
lastAnalysis?: Date
lastTrade?: Date
nextScheduled?: Date
errorCount: number
lastError?: string
}
export class AutomationService {
private isRunning = false
private config: AutomationConfig | null = null
private intervalId: NodeJS.Timeout | null = null
private stats = {
totalTrades: 0,
successfulTrades: 0,
winRate: 0,
totalPnL: 0,
errorCount: 0,
lastError: null as string | null
}
async startAutomation(config: AutomationConfig): Promise<boolean> {
try {
if (this.isRunning) {
throw new Error('Automation is already running')
}
this.config = config
this.isRunning = true
console.log(`🤖 Starting automation for ${config.symbol} ${config.timeframe} in ${config.mode} mode`)
// Ensure user exists in database
await prisma.user.upsert({
where: { id: config.userId },
update: {},
create: {
id: config.userId,
email: `${config.userId}@example.com`,
name: config.userId,
createdAt: new Date(),
updatedAt: new Date()
}
})
// Delete any existing automation session for this user/symbol/timeframe
await prisma.automationSession.deleteMany({
where: {
userId: config.userId,
symbol: config.symbol,
timeframe: config.timeframe
}
})
// Create new automation session in database
await prisma.automationSession.create({
data: {
userId: config.userId,
status: 'ACTIVE',
mode: config.mode,
symbol: config.symbol,
timeframe: config.timeframe,
settings: {
tradingAmount: config.tradingAmount,
maxLeverage: config.maxLeverage,
stopLossPercent: config.stopLossPercent,
takeProfitPercent: config.takeProfitPercent,
maxDailyTrades: config.maxDailyTrades,
riskPercentage: config.riskPercentage
},
startBalance: config.tradingAmount,
currentBalance: config.tradingAmount,
createdAt: new Date(),
updatedAt: new Date()
}
})
// Start automation cycle
this.startAutomationCycle()
// Start price monitoring
await priceMonitorService.startMonitoring()
// Set up price monitor event listeners for automatic analysis triggering
priceMonitorService.on('tp_approach', async (data) => {
if (data.symbol === this.config?.symbol) {
console.log(`🎯 TP approach detected for ${data.symbol}, triggering analysis...`)
await this.triggerPriceBasedAnalysis('TP_APPROACH', data)
}
})
priceMonitorService.on('sl_approach', async (data) => {
if (data.symbol === this.config?.symbol) {
console.log(`⚠️ SL approach detected for ${data.symbol}, triggering analysis...`)
await this.triggerPriceBasedAnalysis('SL_APPROACH', data)
}
})
priceMonitorService.on('critical_level', async (data) => {
if (data.symbol === this.config?.symbol) {
console.log(`🚨 Critical level reached for ${data.symbol}, triggering urgent analysis...`)
await this.triggerPriceBasedAnalysis('CRITICAL', data)
}
})
return true
} catch (error) {
console.error('Failed to start automation:', error)
this.stats.errorCount++
this.stats.lastError = error instanceof Error ? error.message : 'Unknown error'
return false
}
}
private startAutomationCycle(): void {
if (!this.config) return
// Get interval in milliseconds based on timeframe
const intervalMs = this.getIntervalFromTimeframe(this.config.timeframe)
console.log(`🔄 Starting automation cycle every ${intervalMs/1000} seconds`)
this.intervalId = setInterval(async () => {
if (this.isRunning && this.config) {
await this.runAutomationCycle()
}
}, intervalMs)
// Run first cycle immediately
this.runAutomationCycle()
}
private getIntervalFromTimeframe(timeframe: string): number {
const intervals: { [key: string]: number } = {
'1m': 60 * 1000,
'3m': 3 * 60 * 1000,
'5m': 5 * 60 * 1000,
'15m': 15 * 60 * 1000,
'30m': 30 * 60 * 1000,
'1h': 60 * 60 * 1000,
'2h': 2 * 60 * 60 * 1000,
'4h': 4 * 60 * 60 * 1000,
'1d': 24 * 60 * 60 * 1000
}
return intervals[timeframe] || intervals['1h'] // Default to 1 hour
}
private async runAutomationCycle(): Promise<void> {
if (!this.config) return
try {
console.log(`🔍 Running automation cycle for ${this.config.symbol} ${this.config.timeframe}`)
// Step 1: Check daily trade limit
const todayTrades = await this.getTodayTradeCount(this.config.userId)
if (todayTrades >= this.config.maxDailyTrades) {
console.log(`📊 Daily trade limit reached (${todayTrades}/${this.config.maxDailyTrades})`)
// Run cleanup even when trade limit is reached
await this.runPostCycleCleanup('trade_limit_reached')
return
}
// Step 2: Take screenshot and analyze
const analysisResult = await this.performAnalysis()
if (!analysisResult) {
console.log('❌ Analysis failed, skipping cycle')
// Run cleanup when analysis fails
await this.runPostCycleCleanup('analysis_failed')
return
}
// Step 3: Store analysis for learning
await this.storeAnalysisForLearning(analysisResult)
// Step 4: Update session with latest analysis
await this.updateSessionWithAnalysis(analysisResult)
// Step 5: Make trading decision
const tradeDecision = await this.makeTradeDecision(analysisResult)
if (!tradeDecision) {
console.log('📊 No trading opportunity found')
// Run cleanup when no trading opportunity
await this.runPostCycleCleanup('no_opportunity')
return
}
// Step 6: Execute trade
await this.executeTrade(tradeDecision)
// Run cleanup after successful trade execution
await this.runPostCycleCleanup('trade_executed')
} catch (error) {
console.error('Error in automation cycle:', error)
this.stats.errorCount++
this.stats.lastError = error instanceof Error ? error.message : 'Unknown error'
// Run cleanup on error
await this.runPostCycleCleanup('error')
}
}
private async runPostCycleCleanup(reason: string): Promise<void> {
console.log(`🧹 Running post-cycle cleanup (reason: ${reason})`)
// Longer delay to ensure all analysis processes AND trading decision have finished
await new Promise(resolve => setTimeout(resolve, 10000)) // 10 seconds
try {
// Use the new post-analysis cleanup that respects completion flags
await aggressiveCleanup.runPostAnalysisCleanup()
console.log(`✅ Post-cycle cleanup completed for: ${reason}`)
} catch (error) {
console.error('Error in post-cycle cleanup:', error)
}
}
private async performAnalysis(): Promise<{
screenshots: string[]
analysis: AnalysisResult | null
} | null> {
// Generate unique session ID for this analysis
const sessionId = `automation-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`
// Mark the start of analysis cycle to prevent cleanup interruption
analysisCompletionFlag.startAnalysisCycle(sessionId)
try {
console.log(`📸 Starting multi-timeframe analysis with dual layouts... (Session: ${sessionId})`)
// Create progress tracking session
const progressSteps = [
{ id: 'init', title: 'Initialize', description: 'Starting multi-timeframe analysis', status: 'pending' as const },
{ id: 'capture', title: 'Capture', description: 'Capturing screenshots for all timeframes', status: 'pending' as const },
{ id: 'analysis', title: 'Analysis', description: 'Running AI analysis on screenshots', status: 'pending' as const },
{ id: 'complete', title: 'Complete', description: 'Analysis complete', status: 'pending' as const }
]
progressTracker.createSession(sessionId, progressSteps)
progressTracker.updateStep(sessionId, 'init', 'active', 'Starting multi-timeframe analysis...')
// Multi-timeframe analysis: 15m, 1h, 2h, 4h
const timeframes = ['15', '1h', '2h', '4h']
const symbol = this.config!.symbol
console.log(`🔍 Analyzing ${symbol} across timeframes: ${timeframes.join(', ')} with AI + DIY layouts`)
progressTracker.updateStep(sessionId, 'init', 'completed', `Starting analysis for ${timeframes.length} timeframes`)
progressTracker.updateStep(sessionId, 'capture', 'active', 'Capturing screenshots...')
// Analyze each timeframe with both AI and DIY layouts
const multiTimeframeResults = await this.analyzeMultiTimeframeWithDualLayouts(symbol, timeframes, sessionId)
if (multiTimeframeResults.length === 0) {
console.log('❌ No multi-timeframe analysis results')
progressTracker.updateStep(sessionId, 'capture', 'error', 'No analysis results captured')
progressTracker.deleteSession(sessionId)
// Mark analysis as complete to allow cleanup
analysisCompletionFlag.markAnalysisComplete(sessionId)
return null
}
progressTracker.updateStep(sessionId, 'capture', 'completed', `Captured ${multiTimeframeResults.length} timeframe analyses`)
progressTracker.updateStep(sessionId, 'analysis', 'active', 'Processing multi-timeframe results...')
// Process and combine multi-timeframe results
const combinedResult = this.combineMultiTimeframeAnalysis(multiTimeframeResults)
if (!combinedResult.analysis) {
console.log('❌ Failed to combine multi-timeframe analysis')
progressTracker.updateStep(sessionId, 'analysis', 'error', 'Failed to combine analysis results')
progressTracker.deleteSession(sessionId)
// Mark analysis as complete to allow cleanup
analysisCompletionFlag.markAnalysisComplete(sessionId)
return null
}
console.log(`✅ Multi-timeframe analysis completed: ${combinedResult.analysis.recommendation} with ${combinedResult.analysis.confidence}% confidence`)
console.log(`📊 Timeframe alignment: ${this.analyzeTimeframeAlignment(multiTimeframeResults)}`)
progressTracker.updateStep(sessionId, 'analysis', 'completed', `Analysis complete: ${combinedResult.analysis.recommendation}`)
progressTracker.updateStep(sessionId, 'complete', 'completed', 'Multi-timeframe analysis finished')
// Clean up session after successful completion
setTimeout(() => {
progressTracker.deleteSession(sessionId)
}, 2000)
// Mark analysis as complete to allow cleanup
analysisCompletionFlag.markAnalysisComplete(sessionId)
return combinedResult
} catch (error) {
console.error('Error performing multi-timeframe analysis:', error)
progressTracker.updateStep(sessionId, 'analysis', 'error', error instanceof Error ? error.message : 'Unknown error')
setTimeout(() => {
progressTracker.deleteSession(sessionId)
}, 5000)
// Mark analysis as complete even on error to allow cleanup
analysisCompletionFlag.markAnalysisComplete(sessionId)
return null
}
}
private async analyzeMultiTimeframeWithDualLayouts(
symbol: string,
timeframes: string[],
sessionId: string
): Promise<Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>> {
const results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }> = []
for (let i = 0; i < timeframes.length; i++) {
const timeframe = timeframes[i]
try {
console.log(`📊 Analyzing ${symbol} ${timeframe} with AI + DIY layouts... (${i + 1}/${timeframes.length})`)
// Update progress for timeframe
progressTracker.updateTimeframeProgress(sessionId, i + 1, timeframes.length, timeframe)
// Use the dual-layout configuration for each timeframe
const screenshotConfig = {
symbol: symbol,
timeframe: timeframe,
layouts: ['ai', 'diy'],
sessionId: sessionId
}
const result = await aiAnalysisService.captureAndAnalyzeWithConfig(screenshotConfig)
if (result.analysis) {
console.log(`${timeframe} analysis: ${result.analysis.recommendation} (${result.analysis.confidence}% confidence)`)
results.push({
symbol,
timeframe,
analysis: result.analysis
})
} else {
console.log(`${timeframe} analysis failed`)
results.push({
symbol,
timeframe,
analysis: null
})
}
// Small delay between captures to avoid overwhelming the system
await new Promise(resolve => setTimeout(resolve, 3000))
} catch (error) {
console.error(`Failed to analyze ${symbol} ${timeframe}:`, error)
results.push({
symbol,
timeframe,
analysis: null
})
}
}
return results
}
private combineMultiTimeframeAnalysis(results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>): {
screenshots: string[]
analysis: AnalysisResult | null
} {
const validResults = results.filter(r => r.analysis !== null)
if (validResults.length === 0) {
return { screenshots: [], analysis: null }
}
// Get the primary timeframe (1h) as base
const primaryResult = validResults.find(r => r.timeframe === '1h') || validResults[0]
const screenshots = validResults.length > 0 ? [primaryResult.timeframe] : []
// Calculate weighted confidence based on timeframe alignment
const alignment = this.calculateTimeframeAlignment(validResults)
const baseAnalysis = primaryResult.analysis!
// Adjust confidence based on timeframe alignment
const adjustedConfidence = Math.round(baseAnalysis.confidence * alignment.score)
// Create combined analysis with multi-timeframe reasoning
const combinedAnalysis: AnalysisResult = {
...baseAnalysis,
confidence: adjustedConfidence,
reasoning: `Multi-timeframe Dual-Layout Analysis (${results.map(r => r.timeframe).join(', ')}): ${baseAnalysis.reasoning}
📊 Each timeframe analyzed with BOTH AI layout (RSI, MACD, EMAs) and DIY layout (Stochastic RSI, VWAP, OBV)
⏱️ Timeframe Alignment: ${alignment.description}
<EFBFBD> Signal Strength: ${alignment.strength}
🎯 Confidence Adjustment: ${baseAnalysis.confidence}% → ${adjustedConfidence}% (${alignment.score >= 1 ? 'Enhanced' : 'Reduced'} due to timeframe ${alignment.score >= 1 ? 'alignment' : 'divergence'})
🔬 Analysis Details:
${validResults.map(r => `${r.timeframe}: ${r.analysis?.recommendation} (${r.analysis?.confidence}% confidence)`).join('\n')}`,
keyLevels: this.consolidateKeyLevels(validResults),
marketSentiment: this.consolidateMarketSentiment(validResults)
}
return {
screenshots,
analysis: combinedAnalysis
}
}
private calculateTimeframeAlignment(results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>): {
score: number
description: string
strength: string
} {
const recommendations = results.map(r => r.analysis?.recommendation).filter(Boolean)
const buySignals = recommendations.filter(r => r === 'BUY').length
const sellSignals = recommendations.filter(r => r === 'SELL').length
const holdSignals = recommendations.filter(r => r === 'HOLD').length
const total = recommendations.length
const maxSignals = Math.max(buySignals, sellSignals, holdSignals)
const alignmentRatio = maxSignals / total
let score = 1.0
let description = ''
let strength = ''
if (alignmentRatio >= 0.75) {
score = 1.2 // Boost confidence
description = `Strong alignment (${maxSignals}/${total} timeframes agree)`
strength = 'Strong'
} else if (alignmentRatio >= 0.5) {
score = 1.0 // Neutral
description = `Moderate alignment (${maxSignals}/${total} timeframes agree)`
strength = 'Moderate'
} else {
score = 0.8 // Reduce confidence
description = `Weak alignment (${maxSignals}/${total} timeframes agree)`
strength = 'Weak'
}
return { score, description, strength }
}
private consolidateKeyLevels(results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>): any {
const allLevels = results.map(r => r.analysis?.keyLevels).filter(Boolean)
if (allLevels.length === 0) return {}
// Use the 1h timeframe levels as primary, or first available
const primaryLevels = results.find(r => r.timeframe === '1h')?.analysis?.keyLevels || allLevels[0]
return {
...primaryLevels,
note: `Consolidated from ${allLevels.length} timeframes`
}
}
private consolidateMarketSentiment(results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>): 'BULLISH' | 'BEARISH' | 'NEUTRAL' {
const sentiments = results.map(r => r.analysis?.marketSentiment).filter(Boolean)
if (sentiments.length === 0) return 'NEUTRAL'
// Use the 1h timeframe sentiment as primary, or first available
const primarySentiment = results.find(r => r.timeframe === '1h')?.analysis?.marketSentiment || sentiments[0]
return primarySentiment || 'NEUTRAL'
}
private analyzeTimeframeAlignment(results: Array<{ symbol: string; timeframe: string; analysis: AnalysisResult | null }>): string {
const recommendations = results.map(r => ({
timeframe: r.timeframe,
recommendation: r.analysis?.recommendation,
confidence: r.analysis?.confidence || 0
}))
const summary = recommendations.map(r => `${r.timeframe}: ${r.recommendation} (${r.confidence}%)`).join(', ')
return summary
}
private async storeAnalysisForLearning(result: {
screenshots: string[]
analysis: AnalysisResult | null
}): Promise<void> {
try {
if (!result.analysis) return
await prisma.aILearningData.create({
data: {
userId: this.config!.userId,
symbol: this.config!.symbol,
timeframe: this.config!.timeframe,
screenshot: result.screenshots[0] || '',
analysisData: JSON.stringify(result.analysis),
marketConditions: JSON.stringify({
marketSentiment: result.analysis.marketSentiment,
keyLevels: result.analysis.keyLevels,
timestamp: new Date().toISOString()
}),
confidenceScore: result.analysis.confidence,
createdAt: new Date()
}
})
} catch (error) {
console.error('Error storing analysis for learning:', error)
}
}
private async updateSessionWithAnalysis(result: {
screenshots: string[]
analysis: AnalysisResult | null
}): Promise<void> {
try {
if (!result.analysis) return
// Store the analysis decision in a field that works for now
const analysisDecision = `${result.analysis.recommendation} with ${result.analysis.confidence}% confidence - ${result.analysis.summary}`
// Update the current session with the latest analysis
await prisma.automationSession.updateMany({
where: {
userId: this.config!.userId,
symbol: this.config!.symbol,
timeframe: this.config!.timeframe,
status: 'ACTIVE'
},
data: {
lastAnalysis: new Date(),
lastError: analysisDecision // Temporarily store analysis here
}
})
// Also log the analysis for debugging
console.log('📊 Analysis stored in database:', {
recommendation: result.analysis.recommendation,
confidence: result.analysis.confidence,
summary: result.analysis.summary
})
} catch (error) {
console.error('Failed to update session with analysis:', error)
}
}
private async makeTradeDecision(result: {
screenshots: string[]
analysis: AnalysisResult | null
}): Promise<any | null> {
try {
const analysis = result.analysis
if (!analysis) return null
// Only trade if confidence is high enough
if (analysis.confidence < 70) {
console.log(`📊 Confidence too low: ${analysis.confidence}%`)
return null
}
// Only trade if direction is clear
if (analysis.recommendation === 'HOLD') {
console.log('📊 No clear direction signal')
return null
}
// Calculate position size based on risk percentage
const positionSize = await this.calculatePositionSize(analysis)
return {
direction: analysis.recommendation,
confidence: analysis.confidence,
positionSize,
stopLoss: this.calculateStopLoss(analysis),
takeProfit: this.calculateTakeProfit(analysis),
marketSentiment: analysis.marketSentiment
}
} catch (error) {
console.error('Error making trade decision:', error)
return null
}
}
private async calculatePositionSize(analysis: any): Promise<number> {
const baseAmount = this.config!.tradingAmount // This is the USD amount to invest
const riskAdjustment = this.config!.riskPercentage / 100
const confidenceAdjustment = analysis.confidence / 100
// Calculate the USD amount to invest
const usdAmount = baseAmount * riskAdjustment * confidenceAdjustment
// Get current price to convert USD to token amount
let currentPrice = analysis.entry?.price || analysis.currentPrice
if (!currentPrice) {
try {
const { default: PriceFetcher } = await import('./price-fetcher')
currentPrice = await PriceFetcher.getCurrentPrice(this.config?.symbol || 'SOLUSD')
console.log(`📊 Using current ${this.config?.symbol || 'SOLUSD'} price for position size: $${currentPrice}`)
} catch (error) {
console.error('Error fetching price for position size, using fallback:', error)
currentPrice = this.config?.symbol === 'SOLUSD' ? 189 : 100
}
}
// Calculate token amount: USD investment / token price
const tokenAmount = usdAmount / currentPrice
console.log(`💰 Position calculation: $${usdAmount} ÷ $${currentPrice} = ${tokenAmount.toFixed(4)} tokens`)
return tokenAmount
}
private calculateStopLoss(analysis: any): number {
// Use AI analysis stopLoss if available, otherwise calculate from entry price
if (analysis.stopLoss?.price) {
return analysis.stopLoss.price
}
const currentPrice = analysis.entry?.price || 189 // Current SOL price
const stopLossPercent = this.config!.stopLossPercent / 100
if (analysis.recommendation === 'BUY') {
return currentPrice * (1 - stopLossPercent)
} else {
return currentPrice * (1 + stopLossPercent)
}
}
private calculateTakeProfit(analysis: any): number {
// Use AI analysis takeProfit if available, otherwise calculate from entry price
if (analysis.takeProfits?.tp1?.price) {
return analysis.takeProfits.tp1.price
}
const currentPrice = analysis.entry?.price || 150 // Default SOL price
const takeProfitPercent = this.config!.takeProfitPercent / 100
if (analysis.recommendation === 'BUY') {
return currentPrice * (1 + takeProfitPercent)
} else {
return currentPrice * (1 - takeProfitPercent)
}
}
private async executeTrade(decision: any): Promise<void> {
try {
console.log(`🎯 Executing ${this.config!.mode} trade: ${decision.direction} ${decision.positionSize} ${this.config!.symbol}`)
let tradeResult: any
if (this.config!.mode === 'SIMULATION') {
// Execute simulation trade
tradeResult = await this.executeSimulationTrade(decision)
} else {
// Execute live trade via Jupiter
tradeResult = await this.executeLiveTrade(decision)
}
// Store trade in database
await this.storeTrade(decision, tradeResult)
// Update stats
this.updateStats(tradeResult)
console.log(`✅ Trade executed successfully: ${tradeResult.transactionId || 'SIMULATION'}`)
} catch (error) {
console.error('Error executing trade:', error)
this.stats.errorCount++
this.stats.lastError = error instanceof Error ? error.message : 'Trade execution failed'
}
}
private async executeSimulationTrade(decision: any): Promise<any> {
// Simulate trade execution with realistic parameters
let currentPrice = decision.currentPrice
// If no current price provided, fetch real price
if (!currentPrice) {
try {
const { default: PriceFetcher } = await import('./price-fetcher')
currentPrice = await PriceFetcher.getCurrentPrice(this.config?.symbol || 'SOLUSD')
console.log(`📊 Fetched real ${this.config?.symbol || 'SOLUSD'} price: $${currentPrice}`)
} catch (error) {
console.error('Error fetching real price, using fallback:', error)
// Use a more realistic fallback based on symbol
currentPrice = this.config?.symbol === 'SOLUSD' ? 189 : 100
}
}
const slippage = Math.random() * 0.005 // 0-0.5% slippage
const executionPrice = currentPrice * (1 + (Math.random() > 0.5 ? slippage : -slippage))
return {
transactionId: `SIM_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`,
executionPrice,
amount: decision.positionSize,
direction: decision.direction,
status: 'OPEN', // Trades start as OPEN, not COMPLETED
timestamp: new Date(),
fees: decision.positionSize * 0.001, // 0.1% fee
slippage: slippage * 100
}
}
private async executeLiveTrade(decision: any): Promise<any> {
// Execute real trade via Jupiter DEX
const inputToken = decision.direction === 'BUY' ? 'USDC' : 'SOL'
const outputToken = decision.direction === 'BUY' ? 'SOL' : 'USDC'
const tokens = {
SOL: 'So11111111111111111111111111111111111111112',
USDC: 'EPjFWdd5AufqSSqeM2qN1xzybapC8G4wEGGkZwyTDt1v',
}
return await jupiterDEXService.executeSwap(
tokens[inputToken as keyof typeof tokens],
tokens[outputToken as keyof typeof tokens],
decision.positionSize,
50 // 0.5% slippage
)
}
private async storeTrade(decision: any, result: any): Promise<void> {
try {
await prisma.trade.create({
data: {
userId: this.config!.userId,
symbol: this.config!.symbol,
side: decision.direction,
amount: decision.positionSize,
price: result.executionPrice,
status: result.status,
driftTxId: result.transactionId || result.txId,
fees: result.fees || 0,
stopLoss: decision.stopLoss,
takeProfit: decision.takeProfit,
isAutomated: true,
tradingMode: this.config!.mode,
confidence: decision.confidence,
marketSentiment: decision.marketSentiment,
createdAt: new Date()
}
})
} catch (error) {
console.error('Error storing trade:', error)
}
}
private updateStats(result: any): void {
this.stats.totalTrades++
if (result.status === 'COMPLETED') {
this.stats.successfulTrades++
this.stats.winRate = (this.stats.successfulTrades / this.stats.totalTrades) * 100
// Update PnL (simplified calculation)
const pnl = result.amount * 0.01 * (Math.random() > 0.5 ? 1 : -1) // Random PnL for demo
this.stats.totalPnL += pnl
}
}
private async getTodayTradeCount(userId: string): Promise<number> {
const today = new Date()
today.setHours(0, 0, 0, 0)
const count = await prisma.trade.count({
where: {
userId,
isAutomated: true,
createdAt: {
gte: today
}
}
})
return count
}
async stopAutomation(): Promise<boolean> {
try {
this.isRunning = false
// Clear the interval if it exists
if (this.intervalId) {
clearInterval(this.intervalId)
this.intervalId = null
}
// Stop price monitoring
try {
await priceMonitorService.stopMonitoring()
console.log('📊 Price monitoring stopped')
} catch (error) {
console.error('Failed to stop price monitoring:', error)
}
// Update database session status to STOPPED
if (this.config) {
await prisma.automationSession.updateMany({
where: {
userId: this.config.userId,
symbol: this.config.symbol,
timeframe: this.config.timeframe,
status: 'ACTIVE'
},
data: {
status: 'STOPPED',
updatedAt: new Date()
}
})
}
this.config = null
console.log('🛑 Automation stopped')
return true
} catch (error) {
console.error('Failed to stop automation:', error)
return false
}
}
async pauseAutomation(): Promise<boolean> {
try {
if (!this.isRunning) {
return false
}
this.isRunning = false
console.log('⏸️ Automation paused')
return true
} catch (error) {
console.error('Failed to pause automation:', error)
return false
}
}
async resumeAutomation(): Promise<boolean> {
try {
if (!this.config) {
return false
}
this.isRunning = true
console.log('▶️ Automation resumed')
return true
} catch (error) {
console.error('Failed to resume automation:', error)
return false
}
}
async getStatus(): Promise<AutomationStatus | null> {
try {
// Get the latest active automation session from database first
const session = await prisma.automationSession.findFirst({
where: { status: 'ACTIVE' },
orderBy: { createdAt: 'desc' }
})
if (!session) {
return null
}
// If we have a session but automation is not running in memory,
// it means the server was restarted but the session is still active
const isActiveInMemory = this.isRunning && this.config !== null
// Auto-restart automation if session exists but not running in memory
if (!isActiveInMemory) {
console.log('🔄 Found active session but automation not running, attempting auto-restart...')
await this.autoRestartFromSession(session)
}
return {
isActive: this.isRunning && this.config !== null,
mode: session.mode as 'SIMULATION' | 'LIVE',
symbol: session.symbol,
timeframe: session.timeframe,
totalTrades: session.totalTrades,
successfulTrades: session.successfulTrades,
winRate: session.winRate,
totalPnL: session.totalPnL,
errorCount: session.errorCount,
lastError: session.lastError || undefined,
lastAnalysis: session.lastAnalysis || undefined,
lastTrade: session.lastTrade || undefined,
nextScheduled: session.nextScheduled || undefined
}
} catch (error) {
console.error('Failed to get automation status:', error)
return null
}
}
private async autoRestartFromSession(session: any): Promise<void> {
try {
const settings = session.settings || {}
const config: AutomationConfig = {
userId: session.userId,
mode: session.mode,
symbol: session.symbol,
timeframe: session.timeframe,
tradingAmount: settings.tradingAmount || 100,
maxLeverage: settings.maxLeverage || 3,
stopLossPercent: settings.stopLossPercent || 2,
takeProfitPercent: settings.takeProfitPercent || 6,
maxDailyTrades: settings.maxDailyTrades || 5,
riskPercentage: settings.riskPercentage || 2
}
await this.startAutomation(config)
console.log('✅ Automation auto-restarted successfully')
} catch (error) {
console.error('Failed to auto-restart automation:', error)
}
}
async getLearningInsights(userId: string): Promise<{
totalAnalyses: number
avgAccuracy: number
bestTimeframe: string
worstTimeframe: string
commonFailures: string[]
recommendations: string[]
}> {
try {
// For now, return mock data
return {
totalAnalyses: 150,
avgAccuracy: 0.72,
bestTimeframe: '1h',
worstTimeframe: '15m',
commonFailures: [
'Low confidence predictions',
'Missed support/resistance levels',
'Timeframe misalignment'
],
recommendations: [
'Focus on 1h timeframe for better accuracy',
'Wait for higher confidence signals (>75%)',
'Use multiple timeframe confirmation'
]
}
} catch (error) {
console.error('Failed to get learning insights:', error)
return {
totalAnalyses: 0,
avgAccuracy: 0,
bestTimeframe: 'Unknown',
worstTimeframe: 'Unknown',
commonFailures: [],
recommendations: []
}
}
}
/**
* Trigger analysis based on price movement alerts
*/
private async triggerPriceBasedAnalysis(
trigger: 'TP_APPROACH' | 'SL_APPROACH' | 'CRITICAL',
data: any
): Promise<void> {
if (!this.config || !this.isRunning) {
console.log('❌ Cannot trigger price-based analysis: automation not running')
return
}
const sessionId = `price-trigger-${Date.now()}`
try {
console.log(`🔥 Price-based analysis triggered by ${trigger} for ${data.symbol}`)
console.log(`📊 Current price: $${data.currentPrice}, Target: $${data.targetPrice}`)
// Create progress tracker for this analysis
const steps = [
{ id: 'trigger', title: 'Triggered by price movement', description: 'Analysis initiated by price alert', status: 'pending' as ProgressStatus },
{ id: 'screenshot', title: 'Capturing screenshots', description: 'Taking fresh market screenshots', status: 'pending' as ProgressStatus },
{ id: 'analysis', title: 'Running AI analysis', description: 'Analyzing current market conditions', status: 'pending' as ProgressStatus },
{ id: 'evaluation', title: 'Evaluating position', description: 'Checking position adjustments', status: 'pending' as ProgressStatus },
{ id: 'complete', title: 'Analysis complete', description: 'Price-based analysis finished', status: 'pending' as ProgressStatus }
]
progressTracker.createSession(sessionId, steps)
progressTracker.updateStep(sessionId, 'trigger', 'active', `${trigger}: ${data.symbol} at $${data.currentPrice}`)
// Run enhanced screenshot capture with current symbol/timeframe
progressTracker.updateStep(sessionId, 'screenshot', 'active')
const screenshotConfig = {
symbol: this.config.symbol,
timeframe: this.config.timeframe,
layouts: ['ai', 'diy'],
sessionId
}
const screenshots = await enhancedScreenshotService.captureWithLogin(screenshotConfig)
if (!screenshots || screenshots.length === 0) {
throw new Error('Failed to capture screenshots for price-based analysis')
}
progressTracker.updateStep(sessionId, 'screenshot', 'completed', `Captured ${screenshots.length} screenshots`)
progressTracker.updateStep(sessionId, 'analysis', 'active')
// Simplified analysis call - just use the first screenshot
const analysisResult = await aiAnalysisService.analyzeScreenshot(screenshots[0])
if (!analysisResult) {
throw new Error('AI analysis returned null result')
}
progressTracker.updateStep(sessionId, 'analysis', 'completed', `Analysis: ${analysisResult.recommendation}`)
progressTracker.updateStep(sessionId, 'evaluation', 'active')
// Store the triggered analysis in trading journal
await prisma.tradingJournal.create({
data: {
userId: this.config.userId,
screenshotUrl: screenshots[0] || '',
aiAnalysis: analysisResult.reasoning || 'No analysis available',
confidence: analysisResult.confidence || 0,
recommendation: analysisResult.recommendation || 'HOLD',
symbol: this.config.symbol,
timeframe: this.config.timeframe,
sessionId,
notes: `Price-triggered analysis: ${trigger} - Current: $${data.currentPrice}, Target: $${data.targetPrice}`,
marketSentiment: analysisResult.marketSentiment || 'Unknown',
tradingMode: this.config.mode,
isAutomated: true,
priceAtAnalysis: data.currentPrice,
marketCondition: trigger,
createdAt: new Date()
}
})
// Log important insights for potential position adjustments
if (analysisResult.recommendation === 'SELL' && trigger === 'SL_APPROACH') {
console.log('⚠️ AI recommends SELL while approaching Stop Loss - consider early exit')
} else if (analysisResult.recommendation === 'BUY' && trigger === 'TP_APPROACH') {
console.log('🎯 AI recommends BUY while approaching Take Profit - consider extending position')
}
progressTracker.updateStep(sessionId, 'evaluation', 'completed')
progressTracker.updateStep(sessionId, 'complete', 'completed',
`${analysisResult.recommendation} (${analysisResult.confidence}% confidence)`)
console.log(`✅ Price-based analysis completed (${trigger}): ${analysisResult.recommendation} with ${analysisResult.confidence}% confidence`)
} catch (error) {
console.error(`❌ Price-based analysis failed (${trigger}):`, error)
progressTracker.updateStep(sessionId, 'complete', 'error',
`Error: ${error instanceof Error ? error.message : 'Unknown error'}`)
this.stats.errorCount++
this.stats.lastError = error instanceof Error ? error.message : 'Unknown error'
}
}
}
export const automationService = new AutomationService()