feat: Revenge system enhancements #4 and #10 - IMPLEMENTED

Enhancement #4: Failed Revenge Tracking
- Added 3 database fields: revengeOutcome, revengePnL, revengeFailedReason
- Added updateRevengeOutcome() method in stop-hunt-tracker.ts
- Position Manager hooks revenge trade closes, records outcome
- Enables data-driven analysis of revenge success rate

Enhancement #10: Metadata Persistence
- Added 4 database fields: firstCrossTime, lowestInZone, highestInZone, zoneResetCount
- Migrated 90-second zone tracking from in-memory to database
- Rewrote shouldExecuteRevenge() with database persistence
- Container restarts now preserve exact zone tracking state

Technical Details:
- Prisma schema updated with 7 new StopHunt fields
- Added signalSource field to ActiveTrade interface
- All zone metadata persisted in real-time to database
- Build verified successful (no TypeScript errors)

Files Changed:
- prisma/schema.prisma (StopHunt model + index)
- lib/trading/stop-hunt-tracker.ts (DB persistence + outcome tracking)
- lib/trading/position-manager.ts (revenge hook + interface)
- docs/REVENGE_ENHANCEMENTS_EXPLAINED.md (comprehensive guide)

Pending User Decision:
- Enhancement #1: ADX confirmation (3 options explained in docs)
- Enhancement #6: SL distance validation (2× ATR recommended)

Status: Ready for deployment after Prisma migration
Date: Nov 27, 2025
This commit is contained in:
mindesbunister
2025-11-27 08:08:37 +01:00
parent 2238261dfe
commit ceb84c3bc1
6 changed files with 586 additions and 33 deletions

View File

@@ -0,0 +1,341 @@
# Revenge Trade System - Enhancement Explanations
**Status:** Enhancements #4 and #10 IMPLEMENTED (Nov 27, 2025)
**Pending:** Enhancements #1 and #6 awaiting user decision
---
## ✅ IMPLEMENTED: Enhancement #4 - Failed Revenge Tracking
**Problem Solved:** System had no way to analyze revenge trade success rate or learn from failures.
**Implementation:**
- **Database Fields Added:**
- `revengeOutcome` (String): TP1, TP2, SL, TRAILING_SL, manual, emergency
- `revengePnL` (Float): Actual P&L from revenge trade
- `revengeFailedReason` (String): Why it failed (e.g., "stopped_again", "manually_closed")
- **Code Changes:**
- `stop-hunt-tracker.ts`: Added `updateRevengeOutcome()` helper method
- `position-manager.ts`: Added hook in `executeExit()` to record outcome when revenge trade closes
- Automatic detection: Checks `signalSource === 'stop_hunt_revenge'`
**How It Works:**
```typescript
// When revenge trade closes (TP1, TP2, SL, etc.)
if (trade.signalSource === 'stop_hunt_revenge') {
await tracker.updateRevengeOutcome({
revengeTradeId: trade.id,
outcome: 'SL', // or 'TP1', 'TP2', etc.
pnl: -138.35, // Actual profit/loss
failedReason: 'stopped_again' // If outcome = SL
})
}
```
**Benefits:**
- **Analytics:** Query database to see revenge win rate vs regular trades
- **Learning:** Identify which conditions lead to successful revenge (ADX, time of day, etc.)
- **Optimization:** Data-driven improvements to revenge system parameters
**Example SQL Analysis:**
```sql
-- Revenge trade success rate
SELECT
COUNT(*) as total_revenge_trades,
SUM(CASE WHEN "revengeOutcome" IN ('TP1', 'TP2') THEN 1 ELSE 0 END) as wins,
SUM(CASE WHEN "revengeOutcome" = 'SL' THEN 1 ELSE 0 END) as losses,
ROUND(AVG("revengePnL"), 2) as avg_pnl,
ROUND(SUM("revengePnL"), 2) as total_pnl
FROM "StopHunt"
WHERE "revengeExecuted" = true;
-- Compare original stop vs revenge outcome
SELECT
"symbol",
"direction",
"originalQualityScore",
"stopLossAmount" as original_loss,
"revengePnL" as revenge_result,
("stopLossAmount" + "revengePnL") as net_result
FROM "StopHunt"
WHERE "revengeExecuted" = true
ORDER BY net_result DESC;
```
---
## ✅ IMPLEMENTED: Enhancement #10 - Metadata Persistence
**Problem Solved:** Container restarts lost in-memory zone tracking data (firstCrossTime, high/low tracking, reset count).
**Implementation:**
- **Database Fields Added:**
- `firstCrossTime` (DateTime): When price first entered revenge zone
- `lowestInZone` (Float): Lowest price while in zone (for analysis)
- `highestInZone` (Float): Highest price while in zone (for analysis)
- `zoneResetCount` (Int): How many times price left and re-entered zone
- **Code Changes:**
- Rewrote `shouldExecuteRevenge()` to use database persistence instead of in-memory `revengeMetadata`
- All zone tracking now written to database in real-time
- Container restart = continues tracking from database state
**How It Works (90-Second Confirmation):**
```typescript
// BEFORE (LOST ON RESTART):
revengeMetadata.set(stopHunt.id, {
firstCrossTime: Date.now(),
lowestInZone: currentPrice,
highestInZone: currentPrice,
resetCount: 0
})
// AFTER (SURVIVES RESTART):
await prisma.stopHunt.update({
where: { id: stopHunt.id },
data: {
firstCrossTime: new Date(),
lowestInZone: currentPrice,
highestInZone: currentPrice,
zoneResetCount: 0
}
})
```
**90-Second Zone Logic (Persisted):**
1. **First Cross:** Price enters revenge zone → record `firstCrossTime` to DB
2. **Sustained:** Every 30s check: Still in zone? Update `lowestInZone`/`highestInZone`
3. **Timer Check:** If in zone for 90+ seconds → Execute revenge
4. **Reset:** If price leaves zone → clear `firstCrossTime`, increment `zoneResetCount`
5. **Container Restart:** Read from DB, continue tracking from exact state
**Benefits:**
- **Reliability:** No data loss on container restarts (bot can restart during 90s window)
- **Analysis:** Zone behavior patterns visible in database (how often resets, price extremes)
- **Debugging:** Full audit trail of zone entry/exit timestamps
---
## ❓ PENDING: Enhancement #1 - ADX Confirmation
**Problem:** System doesn't validate trend strength before revenge entry. Could re-enter when trend already weakened (ADX dropped from 26 to 15).
**Two Options for Implementation:**
### Option A: Fetch Fresh ADX from Cache (RECOMMENDED)
**How It Works:**
```typescript
// In shouldExecuteRevenge(), before executing revenge:
const cache = getMarketDataCache()
const freshData = cache.get(stopHunt.symbol)
if (!freshData || !freshData.adx) {
console.log('⚠️ No fresh ADX data, skipping validation')
// Proceed without ADX check OR block revenge (user choice)
} else if (freshData.adx < 20) {
console.log(`⚠️ ADX weakened: ${freshData.adx.toFixed(1)} < 20, blocking revenge`)
return false // Don't revenge weak trends
} else {
console.log(`✅ ADX confirmation: ${freshData.adx.toFixed(1)} (strong trend, revenge approved)`)
// Continue with revenge execution
}
```
**Data Source:**
- **TradingView sends market data every 1-5 minutes** to `/api/trading/market-data`
- Cache stores: ADX, ATR, RSI, volumeRatio, pricePosition, currentPrice
- Cache expiry: 5 minutes (fresh data or null)
**Pros:**
- ✅ Real-time trend validation (what's happening NOW, not 2 hours ago)
- ✅ Adapts to changing conditions (trend weakening = skip revenge)
- ✅ Uses existing infrastructure (market-data-cache.ts already working)
- ✅ Same data source as re-entry analytics (proven reliable)
**Cons:**
- ❌ Requires TradingView sending data reliably every 1-5min
- ❌ Cache could be stale if TradingView alert fails
- ❌ Need fallback logic when cache empty
**Fallback Strategy:**
```typescript
if (!freshData || freshData.timestamp < Date.now() - 300000) {
// No data or stale (>5min old)
// Option 1: Proceed without ADX check (less strict)
// Option 2: Block revenge (more conservative)
// Option 3: Use originalADX threshold (hybrid)
}
```
---
### Option B: Compare to Original ADX (SIMPLER)
**How It Works:**
```typescript
// Just validate original signal had strong ADX
if (stopHunt.originalADX && stopHunt.originalADX < 20) {
console.log(`⚠️ Original ADX was weak (${stopHunt.originalADX.toFixed(1)}), blocking revenge`)
return false
}
// No current ADX check - assumes trend still valid
```
**Pros:**
- ✅ Simple, no external dependencies
- ✅ Always available (stored at stop-out time)
- ✅ Filters weak original signals (quality control)
**Cons:**
- ❌ Doesn't validate current trend strength
- ❌ Revenge could enter when trend already died
- ❌ Less sophisticated than real-time validation
**Use Case:**
- Best as **fallback** when fresh ADX unavailable
- Or as **minimum filter** (block quality <85 + ADX <20 at origin)
---
### Recommendation: Hybrid Approach
**Best of Both Worlds:**
```typescript
// 1. Filter at recording time (don't even create StopHunt if ADX was weak)
if (trade.adxAtEntry < 20) {
console.log('⚠️ ADX too weak for revenge system, skipping')
return // Don't record stop hunt
}
// 2. Validate at revenge time (check current ADX before entering)
const freshData = cache.get(stopHunt.symbol)
if (freshData && freshData.adx < 20) {
console.log(`⚠️ ADX weakened: ${freshData.adx} < 20, waiting...`)
return false
}
// 3. Fallback if no fresh data (use original as proxy)
if (!freshData && stopHunt.originalADX < 23) {
console.log('⚠️ No fresh ADX, original was borderline, being conservative')
return false
}
```
**Effect:**
- Layer 1: Block weak signals at origin (ADX <20 at stop-out)
- Layer 2: Real-time validation before revenge entry (current ADX <20)
- Layer 3: Conservative fallback when no fresh data (original <23)
---
## ❓ PENDING: Enhancement #6 - Stop Loss Distance Validation
**Problem:** Revenge enters too close to original stop-loss price, gets stopped by same wick/volatility.
**Example Scenario:**
- Original LONG entry: $141.37
- Stop-out: $142.48 (1.11 points above entry)
- Revenge entry: $141.50 (0.98 points above stop-out)
- Problem: Only 0.13 points between revenge entry and stop zone = instant re-stop
**Solution: Require Minimum Safe Distance**
```typescript
// In shouldExecuteRevenge(), before executing revenge:
// Calculate distance from entry to stop zone
const slDistance = stopHunt.direction === 'long'
? currentPrice - stopHunt.stopHuntPrice // How much room BELOW entry
: stopHunt.stopHuntPrice - currentPrice // How much room ABOVE entry
// Require minimum 2× ATR breathing room
const minSafeDistance = stopHunt.originalATR * 2.0 // Conservative multiplier
if (slDistance < minSafeDistance) {
console.log(`⚠️ Too close to stop zone:`)
console.log(` Distance: $${slDistance.toFixed(2)}`)
console.log(` Required: $${minSafeDistance.toFixed(2)} (2× ATR)`)
console.log(` Waiting for deeper reversal...`)
return false // Don't revenge yet
}
console.log(`✅ Safe distance confirmed: $${slDistance.toFixed(2)} > $${minSafeDistance.toFixed(2)}`)
```
**Visual Example (SOL @ ATR 0.60):**
```
Original Stop: $142.48 (LONG stopped out)
| 2× ATR = $1.20 minimum distance
Safe Zone: $141.28 or lower (revenge approved)
Current: $141.50 ❌ TOO CLOSE (only $0.78 away)
Current: $141.00 ✅ SAFE (1.48 away > 1.20 required)
```
**Multiplier Options:**
- **1.5× ATR**: Aggressive (tight entry, higher re-stop risk)
- **2.0× ATR**: Balanced (RECOMMENDED - proven with trailing stop system)
- **2.5× ATR**: Conservative (waits for deep reversal, may miss some)
**Trade-offs:**
-**Reduces re-stop-outs:** Revenge enters with breathing room
-**ATR-adaptive:** SOL (high vol) vs BTC (low vol) automatically adjusted
-**Misses shallow reversals:** Some revenge opportunities skip if not deep enough
-**Tighter windows:** 4-hour revenge window = less time for deep reversal
**Real-World Test (Nov 26 incident):**
- Original stop: $138.00 (LONG)
- Immediate reversal: $136.32 (1.68 distance = 2.8× ATR)
- Result: Would PASS validation ✅
- Retest bounce: $137.50 (0.50 distance = 0.83× ATR)
- Result: Would BLOCK ❌ (prevented re-stop-out)
**Data to Monitor:**
```sql
-- After implementing: Track how often we block vs success rate
SELECT
COUNT(*) as total_opportunities,
SUM(CASE WHEN blocked_by_distance THEN 1 ELSE 0 END) as blocked_count,
SUM(CASE WHEN revengeExecuted THEN 1 ELSE 0 END) as executed_count,
AVG(CASE WHEN revengeExecuted THEN revengePnL ELSE NULL END) as avg_pnl
FROM stop_hunt_analysis_view;
```
---
## Decision Required
**Enhancement #1 (ADX Confirmation):**
- [ ] Option A: Fetch fresh ADX from cache (real-time validation)
- [ ] Option B: Use original ADX only (simple filter)
- [ ] Option C: Hybrid approach (both layers)
**Enhancement #6 (SL Distance Validation):**
- [ ] Implement with 2.0× ATR multiplier (recommended)
- [ ] Use different multiplier: _____× ATR
- [ ] Skip this enhancement (too restrictive)
**Questions for User:**
1. **ADX source:** Fresh cache vs original vs hybrid?
2. **TradingView data flow:** Are market-data alerts reliable (1-5min frequency)?
3. **Distance multiplier:** 2.0× ATR acceptable or adjust?
4. **Risk tolerance:** Prefer catching more revenge trades (looser filters) or better win rate (stricter filters)?
---
## Next Steps After Decision
1. **If approved:** Implement #1 and #6 with chosen options
2. **Deploy:** Docker rebuild with all 4 enhancements
3. **Monitor:** First quality 85+ stop-out will test all systems
4. **Analyze:** After 10-20 revenge trades, review success rate and adjust
**Files Modified (Ready to Deploy):**
-`prisma/schema.prisma` (7 new fields)
-`lib/trading/stop-hunt-tracker.ts` (DB persistence + outcome tracking)
-`lib/trading/position-manager.ts` (revenge outcome hook + signalSource field)
- ⏳ Build successful, awaiting user decision on #1 and #6