Phase 3: TP/SL Optimization Analytics API

- Created /api/analytics/tp-sl-optimization endpoint
- Analyzes historical trades using MAE/MFE data
- Calculates optimal TP1/TP2/SL levels based on percentiles
- Provides win rate, profit factor, and hit rate analysis
- Shows money left on table (MFE - realized P&L)
- Projects impact of optimal levels on future performance

Analytics calculated:
- MAE analysis: avg, median, percentiles, worst
- MFE analysis: avg, median, percentiles, best
- Current level performance: TP1/TP2/SL hit rates
- Optimal recommendations: TP1=50% of avg MFE, TP2=80%, SL=70% of avg MAE
- Projected improvements: win rate change, profit factor, total P&L

Requires 10+ closed trades with MAE/MFE data to generate recommendations
Test script: scripts/test-analytics.sh

Next: Phase 4 (visual dashboard) or wait for trades with MAE/MFE data
This commit is contained in:
mindesbunister
2025-10-29 21:11:23 +01:00
parent e068c5f2e6
commit da72b5de04
2 changed files with 334 additions and 0 deletions

View File

@@ -0,0 +1,319 @@
/**
* TP/SL Optimization API Endpoint
*
* Analyzes historical trades using MAE/MFE data to recommend optimal TP/SL levels
* GET /api/analytics/tp-sl-optimization
*/
import { NextRequest, NextResponse } from 'next/server'
import { getPrismaClient } from '@/lib/database/trades'
export interface TPSLOptimizationResponse {
success: boolean
analysis?: {
totalTrades: number
winningTrades: number
losingTrades: number
winRate: number
avgWin: number
avgLoss: number
profitFactor: number
// MAE/MFE Analysis
maeAnalysis: {
avgMAE: number
medianMAE: number
percentile25MAE: number
percentile75MAE: number
worstMAE: number
}
mfeAnalysis: {
avgMFE: number
medianMFE: number
percentile25MFE: number
percentile75MFE: number
bestMFE: number
}
// Current Configuration Performance
currentLevels: {
tp1Percent: number
tp2Percent: number
slPercent: number
tp1HitRate: number
tp2HitRate: number
slHitRate: number
moneyLeftOnTable: number // Sum of (MFE - realized P&L) for winning trades
}
// Recommendations
recommendations: {
optimalTP1: number // 50% of avg MFE
optimalTP2: number // 80% of avg MFE
optimalSL: number // 70% of avg MAE (tighter to catch losers early)
reasoning: {
tp1: string
tp2: string
sl: string
}
projectedImpact: {
expectedWinRateChange: number
expectedProfitFactorChange: number
estimatedProfitImprovement: number // % improvement in total P&L
}
}
// Detailed Trade Stats
tradesByOutcome: {
tp1Exits: number
tp2Exits: number
slExits: number
manualExits: number
}
}
error?: string
}
export async function GET(request: NextRequest): Promise<NextResponse<TPSLOptimizationResponse>> {
try {
const prisma = getPrismaClient()
// Get all closed trades with MAE/MFE data
const trades = await prisma.trade.findMany({
where: {
status: 'closed',
maxFavorableExcursion: { not: null },
maxAdverseExcursion: { not: null },
},
orderBy: {
entryTime: 'desc',
},
})
if (trades.length < 10) {
return NextResponse.json({
success: false,
error: `Insufficient data: Only ${trades.length} trades found. Need at least 10 trades with MAE/MFE data for meaningful analysis.`,
})
}
console.log(`📊 Analyzing ${trades.length} trades for TP/SL optimization`)
// Separate winning and losing trades
const winningTrades = trades.filter(t => (t.realizedPnL || 0) > 0)
const losingTrades = trades.filter(t => (t.realizedPnL || 0) <= 0)
// Calculate basic stats
const totalPnL = trades.reduce((sum, t) => sum + (t.realizedPnL || 0), 0)
const avgWin = winningTrades.length > 0
? winningTrades.reduce((sum, t) => sum + (t.realizedPnL || 0), 0) / winningTrades.length
: 0
const avgLoss = losingTrades.length > 0
? Math.abs(losingTrades.reduce((sum, t) => sum + (t.realizedPnL || 0), 0) / losingTrades.length)
: 0
const winRate = (winningTrades.length / trades.length) * 100
const profitFactor = avgLoss > 0 ? (avgWin * winningTrades.length) / (avgLoss * losingTrades.length) : 0
// MAE Analysis (how far price moved against us)
const maeValues = trades
.map(t => t.maxAdverseExcursion!)
.filter(v => v !== null && v !== undefined)
.sort((a, b) => a - b)
const avgMAE = maeValues.reduce((sum, v) => sum + v, 0) / maeValues.length
const medianMAE = maeValues[Math.floor(maeValues.length / 2)]
const percentile25MAE = maeValues[Math.floor(maeValues.length * 0.25)]
const percentile75MAE = maeValues[Math.floor(maeValues.length * 0.75)]
const worstMAE = Math.min(...maeValues)
// MFE Analysis (how far price moved in our favor)
const mfeValues = trades
.map(t => t.maxFavorableExcursion!)
.filter(v => v !== null && v !== undefined)
.sort((a, b) => b - a)
const avgMFE = mfeValues.reduce((sum, v) => sum + v, 0) / mfeValues.length
const medianMFE = mfeValues[Math.floor(mfeValues.length / 2)]
const percentile25MFE = mfeValues[Math.floor(mfeValues.length * 0.75)] // Reverse for MFE
const percentile75MFE = mfeValues[Math.floor(mfeValues.length * 0.25)]
const bestMFE = Math.max(...mfeValues)
// Current configuration analysis (extract from first trade's config snapshot)
const sampleConfig: any = trades[0]?.configSnapshot || {}
const currentTP1 = sampleConfig.takeProfit1Percent || 0.4
const currentTP2 = sampleConfig.takeProfit2Percent || 0.7
const currentSL = sampleConfig.stopLossPercent || -1.1
// Calculate hit rates for current levels
const tp1Hits = trades.filter(t => {
const mfe = t.maxFavorableExcursion || 0
return mfe >= currentTP1
}).length
const tp2Hits = trades.filter(t => {
const mfe = t.maxFavorableExcursion || 0
return mfe >= currentTP2
}).length
const slHits = trades.filter(t => {
const mae = t.maxAdverseExcursion || 0
return mae <= currentSL
}).length
const tp1HitRate = (tp1Hits / trades.length) * 100
const tp2HitRate = (tp2Hits / trades.length) * 100
const slHitRate = (slHits / trades.length) * 100
// Calculate "money left on table" - how much profit we didn't capture
const moneyLeftOnTable = winningTrades.reduce((sum, t) => {
const mfe = t.maxFavorableExcursion || 0
const realizedPct = ((t.realizedPnL || 0) / t.positionSizeUSD) * 100
const leftOnTable = Math.max(0, mfe - realizedPct)
return sum + (leftOnTable * t.positionSizeUSD / 100)
}, 0)
// Calculate optimal levels
const optimalTP1 = avgMFE * 0.5 // Capture 50% of avg move
const optimalTP2 = avgMFE * 0.8 // Capture 80% of avg move
const optimalSL = avgMAE * 0.7 // Exit at 70% of avg adverse move (tighter to minimize losses)
// Trade outcome breakdown
const tp1Exits = trades.filter(t => t.exitReason === 'TP1').length
const tp2Exits = trades.filter(t => t.exitReason === 'TP2').length
const slExits = trades.filter(t =>
t.exitReason === 'SL' || t.exitReason === 'SOFT_SL' || t.exitReason === 'HARD_SL'
).length
const manualExits = trades.filter(t =>
t.exitReason === 'manual' || t.exitReason === 'emergency'
).length
// Projected impact calculation
// Simulate what would have happened with optimal levels
let projectedWins = 0
let projectedLosses = 0
let projectedTotalPnL = 0
trades.forEach(t => {
const mfe = t.maxFavorableExcursion || 0
const mae = t.maxAdverseExcursion || 0
// Would SL have been hit first with optimal level?
if (mae <= optimalSL) {
projectedLosses++
projectedTotalPnL += optimalSL * t.positionSizeUSD / 100
}
// Would TP1 have been hit?
else if (mfe >= optimalTP1) {
projectedWins++
// Assume 50% exit at TP1, 50% continues to TP2 or SL
const tp1PnL = optimalTP1 * t.positionSizeUSD * 0.5 / 100
if (mfe >= optimalTP2) {
const tp2PnL = optimalTP2 * t.positionSizeUSD * 0.5 / 100
projectedTotalPnL += tp1PnL + tp2PnL
} else {
// TP2 not hit, remaining 50% exits at breakeven or small profit
projectedTotalPnL += tp1PnL
}
}
})
const projectedWinRate = (projectedWins / trades.length) * 100
const expectedWinRateChange = projectedWinRate - winRate
const projectedProfitFactor = projectedLosses > 0
? (projectedWins * avgWin) / (projectedLosses * avgLoss)
: 0
const expectedProfitFactorChange = projectedProfitFactor - profitFactor
const estimatedProfitImprovement = totalPnL > 0
? ((projectedTotalPnL - totalPnL) / totalPnL) * 100
: 0
// Build response
const analysis: TPSLOptimizationResponse = {
success: true,
analysis: {
totalTrades: trades.length,
winningTrades: winningTrades.length,
losingTrades: losingTrades.length,
winRate,
avgWin,
avgLoss,
profitFactor,
maeAnalysis: {
avgMAE,
medianMAE,
percentile25MAE,
percentile75MAE,
worstMAE,
},
mfeAnalysis: {
avgMFE,
medianMFE,
percentile25MFE,
percentile75MFE,
bestMFE,
},
currentLevels: {
tp1Percent: currentTP1,
tp2Percent: currentTP2,
slPercent: currentSL,
tp1HitRate,
tp2HitRate,
slHitRate,
moneyLeftOnTable,
},
recommendations: {
optimalTP1,
optimalTP2,
optimalSL,
reasoning: {
tp1: `Set at ${optimalTP1.toFixed(2)}% (50% of avg MFE ${avgMFE.toFixed(2)}%). This captures early profits while letting winners run. Current hit rate: ${tp1HitRate.toFixed(1)}%`,
tp2: `Set at ${optimalTP2.toFixed(2)}% (80% of avg MFE ${avgMFE.toFixed(2)}%). This captures most of the move before reversal. Current hit rate: ${tp2HitRate.toFixed(1)}%`,
sl: `Set at ${optimalSL.toFixed(2)}% (70% of avg MAE ${avgMAE.toFixed(2)}%). Tighter stop to minimize losses on bad trades. Current hit rate: ${slHitRate.toFixed(1)}%`,
},
projectedImpact: {
expectedWinRateChange,
expectedProfitFactorChange,
estimatedProfitImprovement,
},
},
tradesByOutcome: {
tp1Exits,
tp2Exits,
slExits,
manualExits,
},
},
}
console.log('✅ TP/SL optimization analysis complete')
console.log(' Current: TP1=' + currentTP1 + '% TP2=' + currentTP2 + '% SL=' + currentSL + '%')
console.log(' Optimal: TP1=' + optimalTP1.toFixed(2) + '% TP2=' + optimalTP2.toFixed(2) + '% SL=' + optimalSL.toFixed(2) + '%')
console.log(' Projected improvement: ' + estimatedProfitImprovement.toFixed(1) + '%')
return NextResponse.json(analysis)
} catch (error) {
console.error('❌ TP/SL optimization error:', error)
return NextResponse.json(
{
success: false,
error: 'Failed to analyze trades: ' + (error as Error).message,
},
{ status: 500 }
)
}
}

15
scripts/test-analytics.sh Executable file
View File

@@ -0,0 +1,15 @@
#!/bin/bash
# Test TP/SL Optimization Analytics Endpoint
# Usage: ./scripts/test-analytics.sh
echo "🔍 Testing TP/SL Optimization Analytics..."
echo ""
RESPONSE=$(curl -s http://localhost:3001/api/analytics/tp-sl-optimization)
# Pretty print JSON response
echo "$RESPONSE" | jq '.' || echo "$RESPONSE"
echo ""
echo "✅ Test complete"