#!/usr/bin/env python3 """ V11 Test Parameter Sweep Worker Processes chunks of v11 test parameter configurations (512 combinations total). Uses 27 cores (85% CPU) for multiprocessing. PROGRESSIVE SWEEP - Stage 1: Ultra-Permissive (start from 0 filters) Goal: Find which parameter values allow signals through. Test parameter grid (4×4×2×2×2×2×2×2 = 1024 combinations): - flip_threshold: 0.3, 0.35, 0.4, 0.45 (all proven working values) - adx_min: 0, 5, 10, 15 (START FROM ZERO - filter disabled at 0) - long_pos_max: 95, 100 (very loose) - short_pos_min: 0, 5 (START FROM ZERO - filter disabled at 0) - vol_min: 0.0, 0.5 (START FROM ZERO - filter disabled at 0) - entry_buffer_atr: 0.0, 0.10 (START FROM ZERO - filter disabled at 0) - rsi_long_min: 25, 30 (permissive) - rsi_short_max: 75, 80 (permissive) Expected outcomes: - adx_min=0 configs: 150-300 signals (almost no filtering) - adx_min=15 configs: 10-40 signals (strict filtering) - If all still 0 → base indicator broken, not the filters """ import sys import csv import pandas as pd from pathlib import Path from typing import Dict, List, Any from multiprocessing import Pool import functools import itertools # Add current directory to path for v11_moneyline_all_filters import sys.path.insert(0, str(Path(__file__).parent)) from v11_moneyline_all_filters import ( money_line_v11_signals, MoneyLineV11Inputs ) from backtester.simulator import simulate_money_line # CPU limit: 85% of 32 threads = 27 cores MAX_WORKERS = 27 # Global data file path (set by init_worker) _DATA_FILE = None def init_worker(data_file): """Initialize worker process with data file path""" global _DATA_FILE _DATA_FILE = data_file # PROGRESSIVE Test parameter grid (512 combinations) # Stage 1: Ultra-permissive - Start from 0 (filters disabled) to find baseline # Strategy: "Go upwards from 0 until you find something" PARAMETER_GRID = { 'flip_threshold': [0.3, 0.35, 0.4, 0.45], # 4 values - all produce signals (0.5 was broken) 'adx_min': [0, 5, 10, 15], # 4 values - START FROM 0 (no filter) 'long_pos_max': [95, 100], # 2 values - very permissive 'short_pos_min': [0, 5], # 2 values - START FROM 0 (no filter) 'vol_min': [0.0, 0.5], # 2 values - START FROM 0 (no filter) 'entry_buffer_atr': [0.0, 0.10], # 2 values - START FROM 0 (no filter) 'rsi_long_min': [25, 30], # 2 values - permissive 'rsi_short_max': [75, 80], # 2 values - permissive } # Total: 4×4×2×2×2×2×2×2 = 1024 combos # Expected signal counts by flip_threshold: # - 0.3: 1,400-1,600 signals (very loose flip detection) # - 0.35: 1,200-1,400 signals # - 0.4: 1,096-1,186 signals (proven working in worker1 test) # - 0.45: 800-1,000 signals (tighter than 0.4, but still viable) def load_market_data(csv_file: str) -> pd.DataFrame: """Load OHLCV data from CSV""" df = pd.read_csv(csv_file) # Ensure required columns exist required = ['timestamp', 'open', 'high', 'low', 'close', 'volume'] for col in required: if col not in df.columns: raise ValueError(f"Missing required column: {col}") # Convert timestamp if needed if df['timestamp'].dtype == 'object': df['timestamp'] = pd.to_datetime(df['timestamp']) df = df.set_index('timestamp') print(f"✓ Loaded {len(df):,} bars from {csv_file}") return df def backtest_config(config: Dict[str, Any]) -> Dict[str, Any]: """ Run backtest for single v11 test parameter configuration Loads data from global _DATA_FILE path on first call. Returns dict with: - params: original config dict - pnl: total P&L - trades: number of trades - win_rate: % winners - profit_factor: wins/losses ratio - max_drawdown: max drawdown $ """ # Load data (cached per worker process) global _DATA_FILE df = pd.read_csv(_DATA_FILE) df['timestamp'] = pd.to_datetime(df['timestamp']) df = df.set_index('timestamp') try: # Create v11 inputs inputs = MoneyLineV11Inputs( use_quality_filters=True, # 🔧 FIX: Enable filters for progressive sweep flip_threshold=config['flip_threshold'], adx_min=config['adx_min'], long_pos_max=config['long_pos_max'], short_pos_min=config['short_pos_min'], vol_min=config['vol_min'], entry_buffer_atr=config['entry_buffer_atr'], rsi_long_min=config['rsi_long_min'], rsi_long_max=70, # 🔧 FIX: Add missing fixed parameter rsi_short_min=30, # 🔧 FIX: Add missing fixed parameter rsi_short_max=config['rsi_short_max'], ) print(f" Generating signals...", flush=True) # Generate signals signals = money_line_v11_signals(df, inputs) print(f" Got {len(signals)} signals, simulating...", flush=True) if not signals: return { 'params': config, 'pnl': 0.0, 'trades': 0, 'win_rate': 0.0, 'profit_factor': 0.0, 'max_drawdown': 0.0, } # Simple backtesting: track equity curve equity = 1000.0 # Starting capital peak_equity = equity max_drawdown = 0.0 wins = 0 losses = 0 win_pnl = 0.0 loss_pnl = 0.0 for signal in signals: # Simple trade simulation # TP1 at +0.86%, SL at -1.29% (ATR-based defaults) entry = signal.entry_price # Look ahead in data to see if TP or SL hit signal_idx = df.index.get_loc(signal.timestamp) # Look ahead up to 100 bars max_bars = min(100, len(df) - signal_idx - 1) if max_bars <= 0: continue future_data = df.iloc[signal_idx+1:signal_idx+1+max_bars] if signal.direction == "long": tp_price = entry * 1.0086 # +0.86% sl_price = entry * 0.9871 # -1.29% # Check if TP or SL hit hit_tp = (future_data['high'] >= tp_price).any() hit_sl = (future_data['low'] <= sl_price).any() if hit_tp: pnl = 1000.0 * 0.0086 # $8.60 on $1000 position equity += pnl wins += 1 win_pnl += pnl elif hit_sl: pnl = -1000.0 * 0.0129 # -$12.90 on $1000 position equity += pnl losses += 1 loss_pnl += abs(pnl) else: # short tp_price = entry * 0.9914 # -0.86% sl_price = entry * 1.0129 # +1.29% # Check if TP or SL hit hit_tp = (future_data['low'] <= tp_price).any() hit_sl = (future_data['high'] >= sl_price).any() if hit_tp: pnl = 1000.0 * 0.0086 # $8.60 on $1000 position equity += pnl wins += 1 win_pnl += pnl elif hit_sl: pnl = -1000.0 * 0.0129 # -$12.90 on $1000 position equity += pnl losses += 1 loss_pnl += abs(pnl) # Track drawdown peak_equity = max(peak_equity, equity) current_drawdown = peak_equity - equity max_drawdown = max(max_drawdown, current_drawdown) total_trades = wins + losses win_rate = wins / total_trades if total_trades > 0 else 0.0 profit_factor = win_pnl / loss_pnl if loss_pnl > 0 else (float('inf') if win_pnl > 0 else 0.0) total_pnl = equity - 1000.0 return { 'params': config, 'pnl': round(total_pnl, 2), 'trades': total_trades, 'win_rate': round(win_rate * 100, 1), 'profit_factor': round(profit_factor, 3) if profit_factor != float('inf') else 999.0, 'max_drawdown': round(max_drawdown, 2), } except Exception as e: print(f"✗ Error backtesting config: {e}") return { 'params': config, 'pnl': 0.0, 'trades': 0, 'win_rate': 0.0, 'profit_factor': 0.0, 'max_drawdown': 0.0, } def generate_parameter_combinations() -> List[Dict[str, Any]]: """Generate all 256 parameter combinations""" keys = PARAMETER_GRID.keys() values = PARAMETER_GRID.values() combinations = [] for combo in itertools.product(*values): config = dict(zip(keys, combo)) combinations.append(config) return combinations def process_chunk(data_file: str, chunk_id: str, start_idx: int, end_idx: int): """Process a chunk of parameter combinations""" print(f"\n{'='*60}") print(f"V11 Test Worker - {chunk_id}") print(f"Processing combinations {start_idx} to {end_idx-1}") print(f"{'='*60}\n") # Load market data df = load_market_data(data_file) # Generate all combinations all_combos = generate_parameter_combinations() print(f"✓ Generated {len(all_combos)} total combinations") # Get this chunk's combinations chunk_combos = all_combos[start_idx:end_idx] print(f"✓ Processing {len(chunk_combos)} combinations in this chunk\n") # Backtest with multiprocessing (pass data file path instead of dataframe) print(f"⚡ Starting {MAX_WORKERS}-core backtest...\n") with Pool(processes=MAX_WORKERS, initializer=init_worker, initargs=(data_file,)) as pool: results = pool.map(backtest_config, chunk_combos) print(f"\n✓ Completed {len(results)} backtests") # Write results to CSV output_dir = Path('v11_test_results') output_dir.mkdir(exist_ok=True) csv_file = output_dir / f"{chunk_id}_results.csv" with open(csv_file, 'w', newline='') as f: writer = csv.writer(f) # Header writer.writerow([ 'flip_threshold', 'adx_min', 'long_pos_max', 'short_pos_min', 'vol_min', 'entry_buffer_atr', 'rsi_long_min', 'rsi_short_max', 'pnl', 'win_rate', 'profit_factor', 'max_drawdown', 'total_trades' ]) # Data rows for result in results: params = result['params'] writer.writerow([ params['flip_threshold'], params['adx_min'], params['long_pos_max'], params['short_pos_min'], params['vol_min'], params['entry_buffer_atr'], params['rsi_long_min'], params['rsi_short_max'], result['pnl'], result['win_rate'], result['profit_factor'], result['max_drawdown'], result['trades'], ]) print(f"✓ Results saved to {csv_file}") # Show top 5 results sorted_results = sorted(results, key=lambda x: x['pnl'], reverse=True) print(f"\n🏆 Top 5 Results:") for i, r in enumerate(sorted_results[:5], 1): print(f" {i}. PnL: ${r['pnl']:,.2f} | Trades: {r['trades']} | WR: {r['win_rate']}%") if __name__ == '__main__': if len(sys.argv) != 4: print("Usage: python v11_test_worker.py ") sys.exit(1) data_file = sys.argv[1] chunk_id = sys.argv[2] start_idx = int(sys.argv[3]) # Calculate end index (256 combos per chunk) end_idx = start_idx + 256 process_chunk(data_file, chunk_id, start_idx, end_idx)