Files
mindesbunister 5f7702469e remove: V10 momentum system - backtest proved it adds no value
- Removed v10 TradingView indicator (moneyline_v10_momentum_dots.pinescript)
- Removed v10 penalty system from signal-quality.ts (-30/-25 point penalties)
- Removed backtest result files (sweep_*.csv)
- Updated copilot-instructions.md to remove v10 references
- Simplified direction-specific quality thresholds (LONG 90+, SHORT 80+)

Rationale:
- 1,944 parameter combinations tested in backtest
- All top results IDENTICAL (568 trades, $498 P&L, 61.09% WR)
- Momentum parameters had ZERO impact on trade selection
- Profit factor 1.027 too low (barely profitable after fees)
- Max drawdown -$1,270 vs +$498 profit = terrible risk-reward
- v10 penalties were blocking good trades (bug: applied to wrong positions)

Keeping v9 as production system - simpler, proven, effective.
2025-11-28 22:35:32 +01:00

84 lines
2.2 KiB
Python

"""
.. deprecated:: 1.20
*This module is deprecated. Instead of importing functions from*
``numpy.dual``, *the functions should be imported directly from NumPy
or SciPy*.
Aliases for functions which may be accelerated by SciPy.
SciPy_ can be built to use accelerated or otherwise improved libraries
for FFTs, linear algebra, and special functions. This module allows
developers to transparently support these accelerated functions when
SciPy is available but still support users who have only installed
NumPy.
.. _SciPy : https://www.scipy.org
"""
import warnings
warnings.warn('The module numpy.dual is deprecated. Instead of using dual, '
'use the functions directly from numpy or scipy.',
category=DeprecationWarning,
stacklevel=2)
# This module should be used for functions both in numpy and scipy if
# you want to use the numpy version if available but the scipy version
# otherwise.
# Usage --- from numpy.dual import fft, inv
__all__ = ['fft', 'ifft', 'fftn', 'ifftn', 'fft2', 'ifft2',
'norm', 'inv', 'svd', 'solve', 'det', 'eig', 'eigvals',
'eigh', 'eigvalsh', 'lstsq', 'pinv', 'cholesky', 'i0']
import numpy.linalg as linpkg
import numpy.fft as fftpkg
from numpy.lib import i0
import sys
fft = fftpkg.fft
ifft = fftpkg.ifft
fftn = fftpkg.fftn
ifftn = fftpkg.ifftn
fft2 = fftpkg.fft2
ifft2 = fftpkg.ifft2
norm = linpkg.norm
inv = linpkg.inv
svd = linpkg.svd
solve = linpkg.solve
det = linpkg.det
eig = linpkg.eig
eigvals = linpkg.eigvals
eigh = linpkg.eigh
eigvalsh = linpkg.eigvalsh
lstsq = linpkg.lstsq
pinv = linpkg.pinv
cholesky = linpkg.cholesky
_restore_dict = {}
def register_func(name, func):
if name not in __all__:
raise ValueError("{} not a dual function.".format(name))
f = sys._getframe(0).f_globals
_restore_dict[name] = f[name]
f[name] = func
def restore_func(name):
if name not in __all__:
raise ValueError("{} not a dual function.".format(name))
try:
val = _restore_dict[name]
except KeyError:
return
else:
sys._getframe(0).f_globals[name] = val
def restore_all():
for name in _restore_dict.keys():
restore_func(name)