CRITICAL FIX (Nov 30, 2025):
- Dashboard showed 'idle' despite 22+ worker processes running
- Root cause: SSH-based worker detection timing out
- Solution: Check database for running chunks FIRST
Changes:
1. app/api/cluster/status/route.ts:
- Query exploration database before SSH detection
- If running chunks exist, mark workers 'active' even if SSH fails
- Override worker status: 'offline' → 'active' when chunks running
- Log: '✅ Cluster status: ACTIVE (database shows running chunks)'
- Database is source of truth, SSH only for supplementary metrics
2. app/cluster/page.tsx:
- Stop button ALREADY EXISTS (conditionally shown)
- Shows Start when status='idle', Stop when status='active'
- No code changes needed - fixed by status detection
Result:
- Dashboard now shows 'ACTIVE' with 2 workers (correct)
- Workers show 'active' status (was 'offline')
- Stop button automatically visible when cluster active
- System resilient to SSH timeouts/network issues
Verified:
- Container restarted: Nov 30 21:18 UTC
- API tested: Returns status='active', activeWorkers=2
- Logs confirm: Database-first logic working
- Workers confirmed running: 22+ processes on worker1, workers on worker2
151 lines
4.8 KiB
Python
151 lines
4.8 KiB
Python
"""
|
|
v8 "Sticky Trend" indicator implementation for backtesting.
|
|
|
|
Key differences from v9:
|
|
- confirmBars = 2 (waits 2 bars after flip)
|
|
- flipThreshold = 0.8% (higher than v9's 0.6%)
|
|
- NO MA gap analysis (removed)
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
try:
|
|
from typing import Literal
|
|
except ImportError:
|
|
from typing_extensions import Literal
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from backtester.math_utils import calculate_adx, calculate_atr, rma
|
|
|
|
Direction = Literal["long", "short"]
|
|
|
|
|
|
@dataclass
|
|
class MoneyLineV8Inputs:
|
|
atr_length: int = 14
|
|
adx_length: int = 14
|
|
rsi_length: int = 14
|
|
flip_threshold_percent: float = 0.8 # v8: Higher threshold (more conservative)
|
|
confirm_bars: int = 2 # v8: Wait 2 bars after flip
|
|
cooldown_bars: int = 3
|
|
|
|
|
|
@dataclass
|
|
class MoneyLineV8Signal:
|
|
timestamp: pd.Timestamp
|
|
direction: Direction
|
|
entry_price: float
|
|
adx: float
|
|
atr: float
|
|
rsi: float
|
|
volume_ratio: float
|
|
price_position: float
|
|
|
|
|
|
def ema(series: pd.Series, length: int) -> pd.Series:
|
|
return series.ewm(span=length, adjust=False).mean()
|
|
|
|
|
|
def rolling_volume_ratio(volume: pd.Series, length: int = 20) -> pd.Series:
|
|
avg = volume.rolling(length).mean()
|
|
return volume / avg
|
|
|
|
|
|
def price_position(high: pd.Series, low: pd.Series, close: pd.Series, length: int = 100) -> pd.Series:
|
|
highest = high.rolling(length).max()
|
|
lowest = low.rolling(length).min()
|
|
return 100.0 * (close - lowest) / (highest - lowest)
|
|
|
|
|
|
def rsi(series: pd.Series, length: int) -> pd.Series:
|
|
delta = series.diff()
|
|
gain = np.where(delta > 0, delta, 0.0)
|
|
loss = np.where(delta < 0, -delta, 0.0)
|
|
avg_gain = rma(pd.Series(gain), length)
|
|
avg_loss = rma(pd.Series(loss), length)
|
|
rs = avg_gain / avg_loss.replace(0, np.nan)
|
|
rsi_series = 100 - (100 / (1 + rs))
|
|
return rsi_series.fillna(50.0)
|
|
|
|
|
|
def money_line_v8_signals(df: pd.DataFrame, inputs: Optional[MoneyLineV8Inputs] = None) -> list[MoneyLineV8Signal]:
|
|
"""
|
|
v8 "Sticky Trend" signal generation.
|
|
|
|
Key behavior:
|
|
- Waits 2 bars after EMA flip for confirmation (confirmBars=2)
|
|
- Higher flip threshold (0.8% vs v9's 0.6%)
|
|
- No MA gap analysis
|
|
- Fewer but higher quality signals
|
|
"""
|
|
if inputs is None:
|
|
inputs = MoneyLineV8Inputs()
|
|
|
|
data = df.copy()
|
|
data = data.sort_index()
|
|
|
|
# Calculate indicators (same as v9)
|
|
data["ema_fast"] = ema(data["close"], 50) # Fast EMA for Money Line
|
|
data["rsi"] = rsi(data["close"], inputs.rsi_length)
|
|
data["atr"] = calculate_atr(data, inputs.atr_length)
|
|
data["adx"] = calculate_adx(data, inputs.adx_length)
|
|
data["volume_ratio"] = rolling_volume_ratio(data["volume"])
|
|
data["price_position"] = price_position(data["high"], data["low"], data["close"])
|
|
|
|
signals: list[MoneyLineV8Signal] = []
|
|
cooldown_remaining = 0
|
|
pending_signal: Optional[tuple[Direction, int]] = None # (direction, bars_since_flip)
|
|
|
|
for idx in range(1, len(data)):
|
|
row = data.iloc[idx]
|
|
prev = data.iloc[idx - 1]
|
|
close = row.close
|
|
fast = row.ema_fast
|
|
|
|
# Detect EMA flip
|
|
flip_up = prev.close <= prev.ema_fast and close > fast
|
|
flip_down = prev.close >= prev.ema_fast and close < fast
|
|
|
|
# Check flip threshold (v8: 0.8%)
|
|
threshold_distance = abs(close - fast) / close
|
|
meets_threshold = threshold_distance >= (inputs.flip_threshold_percent / 100.0)
|
|
|
|
# v8 LOGIC: Start confirmation countdown on flip
|
|
if flip_up and meets_threshold and cooldown_remaining == 0 and pending_signal is None:
|
|
pending_signal = ("long", 0)
|
|
elif flip_down and meets_threshold and cooldown_remaining == 0 and pending_signal is None:
|
|
pending_signal = ("short", 0)
|
|
|
|
# Increment confirmation counter
|
|
if pending_signal:
|
|
direction, bars_since = pending_signal
|
|
bars_since += 1
|
|
|
|
# v8: After 2 bars confirmation, generate signal
|
|
if bars_since >= inputs.confirm_bars:
|
|
signals.append(
|
|
MoneyLineV8Signal(
|
|
timestamp=row.name,
|
|
direction=direction,
|
|
entry_price=float(close),
|
|
adx=float(row.adx),
|
|
atr=float(row.atr),
|
|
rsi=float(row.rsi),
|
|
volume_ratio=float(row.volume_ratio),
|
|
price_position=float(row.price_position),
|
|
)
|
|
)
|
|
pending_signal = None
|
|
cooldown_remaining = inputs.cooldown_bars
|
|
else:
|
|
pending_signal = (direction, bars_since)
|
|
|
|
if cooldown_remaining > 0:
|
|
cooldown_remaining -= 1
|
|
|
|
return signals
|