Files
trading_bot_v4/.venv/lib/python3.7/site-packages/pandas/io/spss.py
mindesbunister 5f7702469e remove: V10 momentum system - backtest proved it adds no value
- Removed v10 TradingView indicator (moneyline_v10_momentum_dots.pinescript)
- Removed v10 penalty system from signal-quality.ts (-30/-25 point penalties)
- Removed backtest result files (sweep_*.csv)
- Updated copilot-instructions.md to remove v10 references
- Simplified direction-specific quality thresholds (LONG 90+, SHORT 80+)

Rationale:
- 1,944 parameter combinations tested in backtest
- All top results IDENTICAL (568 trades, $498 P&L, 61.09% WR)
- Momentum parameters had ZERO impact on trade selection
- Profit factor 1.027 too low (barely profitable after fees)
- Max drawdown -$1,270 vs +$498 profit = terrible risk-reward
- v10 penalties were blocking good trades (bug: applied to wrong positions)

Keeping v9 as production system - simpler, proven, effective.
2025-11-28 22:35:32 +01:00

50 lines
1.2 KiB
Python

from __future__ import annotations
from pathlib import Path
from typing import Sequence
from pandas.compat._optional import import_optional_dependency
from pandas.core.dtypes.inference import is_list_like
from pandas.core.api import DataFrame
from pandas.io.common import stringify_path
def read_spss(
path: str | Path,
usecols: Sequence[str] | None = None,
convert_categoricals: bool = True,
) -> DataFrame:
"""
Load an SPSS file from the file path, returning a DataFrame.
.. versionadded:: 0.25.0
Parameters
----------
path : str or Path
File path.
usecols : list-like, optional
Return a subset of the columns. If None, return all columns.
convert_categoricals : bool, default is True
Convert categorical columns into pd.Categorical.
Returns
-------
DataFrame
"""
pyreadstat = import_optional_dependency("pyreadstat")
if usecols is not None:
if not is_list_like(usecols):
raise TypeError("usecols must be list-like.")
else:
usecols = list(usecols) # pyreadstat requires a list
df, _ = pyreadstat.read_sav(
stringify_path(path), usecols=usecols, apply_value_formats=convert_categoricals
)
return df