Files
trading_bot_v4/.github/copilot-instructions.md
mindesbunister 27c6a06d31 Update copilot-instructions.md with latest system features
Major additions:
- Exit strategy details: 3-tier scaling (TP1 75%, TP2 80% of remaining, 5% runner with trailing stop)
- Signal quality system: 5 metrics scored 0-100, filters trades at 60+ threshold
- Runner implementation: Trailing stop activation after TP2, peakPrice tracking
- Database fields: signalQualityScore, MAE/MFE, configSnapshot for state persistence
- New API endpoints: /check-risk, /analytics/last-trade, /restart
- Updated workflows with quality score validation and runner management
- Common pitfalls: Quality score duplication, runner configuration confusion
- Development roadmap: Link to POSITION_SCALING_ROADMAP.md with 6 phases

Critical corrections:
- Position Manager singleton: getPositionManager() → getInitializedPositionManager()
- Updated monitoring loop details with external closure detection and state saving
2025-10-31 12:04:20 +01:00

13 KiB
Raw Blame History

AI Agent Instructions for Trading Bot v4

Architecture Overview

Type: Autonomous cryptocurrency trading bot with Next.js 15 frontend + Solana/Drift Protocol backend

Data Flow: TradingView → n8n webhook → Next.js API → Drift Protocol (Solana DEX) → Real-time monitoring → Auto-exit

Key Design Principle: Dual-layer redundancy - every trade has both on-chain orders (Drift) AND software monitoring (Position Manager) as backup.

Exit Strategy: Three-tier scaling system:

  • TP1 at +1.5%: Close 75% (configurable via TAKE_PROFIT_1_SIZE_PERCENT)
  • TP2 at +3.0%: Close 80% of remaining = 20% total (configurable via TAKE_PROFIT_2_SIZE_PERCENT)
  • Runner: 5% remaining with 0.3% trailing stop (configurable via TRAILING_STOP_PERCENT)

Signal Quality System: Filters trades based on 5 metrics (ATR, ADX, RSI, volumeRatio, pricePosition) scored 0-100. Only trades scoring 60+ are executed. Scores stored in database for future optimization.

Critical Components

1. Position Manager (lib/trading/position-manager.ts)

Purpose: Software-based monitoring loop that checks prices every 2 seconds and closes positions via market orders

Singleton pattern: Always use getInitializedPositionManager() - never instantiate directly

const positionManager = await getInitializedPositionManager()
await positionManager.addTrade(activeTrade)

Key behaviors:

  • Tracks ActiveTrade objects in a Map
  • Three-tier exits: TP1 (75%), TP2 (80% of remaining), Runner (with trailing stop)
  • Dynamic SL adjustments: Moves to breakeven after TP1, locks profit at +1.2%
  • Trailing stop: Activates after TP2, tracks peakPrice and trails by configured %
  • Closes positions via closePosition() market orders when targets hit
  • Acts as backup if on-chain orders don't fill
  • State persistence: Saves to database, restores on restart via configSnapshot.positionManagerState

2. Drift Client (lib/drift/client.ts)

Purpose: Solana/Drift Protocol SDK wrapper for order execution

Singleton pattern: Use initializeDriftService() and getDriftService() - maintains single connection

const driftService = await initializeDriftService()
const health = await driftService.getAccountHealth()

Wallet handling: Supports both JSON array [91,24,...] and base58 string formats from Phantom wallet

3. Order Placement (lib/drift/orders.ts)

Critical function: placeExitOrders() - places TP/SL orders on-chain

Dual Stop System (USE_DUAL_STOPS=true):

// Soft stop: TRIGGER_LIMIT at -1.5% (avoids wicks)
// Hard stop: TRIGGER_MARKET at -2.5% (guarantees exit)

Order types:

  • Entry: MARKET (immediate execution)
  • TP1/TP2: LIMIT reduce-only orders
  • Soft SL: TRIGGER_LIMIT reduce-only
  • Hard SL: TRIGGER_MARKET reduce-only

4. Database (lib/database/trades.ts + prisma/schema.prisma)

Purpose: PostgreSQL via Prisma ORM for trade history and analytics

Models: Trade, PriceUpdate, SystemEvent, DailyStats

Singleton pattern: Use getPrismaClient() - never instantiate PrismaClient directly

Key functions:

  • createTrade() - Save trade after execution (includes dual stop TX signatures + signalQualityScore)
  • updateTradeExit() - Record exit with P&L
  • addPriceUpdate() - Track price movements (called by Position Manager)
  • getTradeStats() - Win rate, profit factor, avg win/loss
  • getLastTrade() - Fetch most recent trade for analytics dashboard

Important fields:

  • signalQualityScore (Int?) - 0-100 score for data-driven optimization
  • maxFavorableExcursion / maxAdverseExcursion - Track best/worst P&L during trade lifetime
  • configSnapshot (Json) - Stores Position Manager state for crash recovery
  • atr, adx, rsi, volumeRatio, pricePosition - Context metrics from TradingView

Configuration System

Three-layer merge:

  1. DEFAULT_TRADING_CONFIG (config/trading.ts)
  2. Environment variables (.env) via getConfigFromEnv()
  3. Runtime overrides via getMergedConfig(overrides)

Always use: getMergedConfig() to get final config - never read env vars directly in business logic

Symbol normalization: TradingView sends "SOLUSDT" → must convert to "SOL-PERP" for Drift

const driftSymbol = normalizeTradingViewSymbol(body.symbol)

API Endpoints Architecture

Authentication: All /api/trading/* endpoints (except /test) require Authorization: Bearer API_SECRET_KEY

Pattern: Each endpoint follows same flow:

  1. Auth check
  2. Get config via getMergedConfig()
  3. Initialize Drift service
  4. Check account health
  5. Execute operation
  6. Save to database
  7. Add to Position Manager if applicable

Key endpoints:

  • /api/trading/execute - Main entry point from n8n (production, requires auth)
  • /api/trading/check-risk - Pre-execution validation (duplicate check, quality score, rate limits)
  • /api/trading/test - Test trades from settings UI (no auth required)
  • /api/trading/close - Manual position closing
  • /api/trading/positions - Query open positions from Drift
  • /api/settings - Get/update config (writes to .env file)
  • /api/analytics/last-trade - Fetch most recent trade details for dashboard
  • /api/restart - Create restart flag for watch-restart.sh script

Critical Workflows

Execute Trade (Production)

TradingView alert → n8n Parse Signal Enhanced (extracts metrics)
  ↓ /api/trading/check-risk [validates quality score ≥60, checks duplicates]
  ↓ /api/trading/execute
  ↓ normalize symbol (SOLUSDT → SOL-PERP)
  ↓ getMergedConfig()
  ↓ openPosition() [MARKET order]
  ↓ calculate dual stop prices if enabled
  ↓ placeExitOrders() [on-chain TP1/TP2/SL orders]
  ↓ calculateQualityScore() [compute 0-100 score from metrics]
  ↓ createTrade() [save to database with signalQualityScore]
  ↓ positionManager.addTrade() [start monitoring]

Position Monitoring Loop

Position Manager every 2s:
  ↓ Verify on-chain position still exists (detect external closures)
  ↓ getPythPriceMonitor().getLatestPrice()
  ↓ Calculate current P&L and update peakPrice
  ↓ Check emergency stop (-2%) → closePosition(100%)
  ↓ Check SL hit → closePosition(100%)
  ↓ Check TP1 hit → closePosition(75%), move SL to breakeven
  ↓ Check profit lock trigger (+1.2%) → move SL to +configured%
  ↓ Check TP2 hit → closePosition(80% of remaining), activate runner
  ↓ Check trailing stop (if runner active) → adjust SL dynamically based on peakPrice
  ↓ addPriceUpdate() [save to database every N checks]
  ↓ saveTradeState() [persist Position Manager state for crash recovery]

Settings Update

Web UI → /api/settings POST
  ↓ Validate new settings
  ↓ Write to .env file using string replacement
  ↓ Return success
  ↓ User clicks "Restart Bot" → /api/restart
  ↓ Creates /tmp/trading-bot-restart.flag
  ↓ watch-restart.sh detects flag
  ↓ Executes: docker restart trading-bot-v4

Docker Context

Multi-stage build: deps → builder → runner (Node 20 Alpine)

Critical Dockerfile steps:

  1. Install deps with npm install --production
  2. Copy source and npx prisma generate (MUST happen before build)
  3. npm run build (Next.js standalone output)
  4. Runner stage copies standalone + static + node_modules + Prisma client

Container networking:

  • External: trading-bot-v4 on port 3001
  • Internal: Next.js on port 3000
  • Database: trading-bot-postgres on 172.28.0.0/16 network

DATABASE_URL caveat: Use trading-bot-postgres (container name) in .env for runtime, but localhost:5432 for Prisma CLI migrations from host

Project-Specific Patterns

1. Singleton Services

Never create multiple instances - always use getter functions:

const driftService = await initializeDriftService() // NOT: new DriftService()
const positionManager = getPositionManager()        // NOT: new PositionManager()
const prisma = getPrismaClient()                     // NOT: new PrismaClient()

2. Price Calculations

Direction matters for long vs short:

function calculatePrice(entry: number, percent: number, direction: 'long' | 'short') {
  if (direction === 'long') {
    return entry * (1 + percent / 100)  // Long: +1% = higher price
  } else {
    return entry * (1 - percent / 100)  // Short: +1% = lower price
  }
}

3. Error Handling

Database failures should not fail trades - always wrap in try/catch:

try {
  await createTrade(params)
  console.log('💾 Trade saved to database')
} catch (dbError) {
  console.error('❌ Failed to save trade:', dbError)
  // Don't fail the trade if database save fails
}

4. Reduce-Only Orders

All exit orders MUST be reduce-only (can only close, not open positions):

const orderParams = {
  reduceOnly: true,  // CRITICAL for TP/SL orders
  // ... other params
}

Testing Commands

# Local development
npm run dev

# Build production
npm run build && npm start

# Docker build and restart
docker compose build trading-bot
docker compose up -d --force-recreate trading-bot
docker logs -f trading-bot-v4

# Database operations
npx prisma generate                                    # Generate client
DATABASE_URL="postgresql://...@localhost:5432/..." npx prisma migrate dev
docker exec trading-bot-postgres psql -U postgres -d trading_bot_v4 -c "\dt"

# Test trade from UI
# Go to http://localhost:3001/settings
# Click "Test LONG" or "Test SHORT"

Common Pitfalls

  1. Prisma not generated in Docker: Must run npx prisma generate in Dockerfile BEFORE npm run build

  2. Wrong DATABASE_URL: Container runtime needs trading-bot-postgres, Prisma CLI from host needs localhost:5432

  3. Symbol format mismatch: Always normalize with normalizeTradingViewSymbol() before calling Drift

  4. Missing reduce-only flag: Exit orders without reduceOnly: true can accidentally open new positions

  5. Singleton violations: Creating multiple DriftClient or Position Manager instances causes connection/state issues

  6. Type errors with Prisma: The Trade type from Prisma is only available AFTER npx prisma generate - use explicit types or // @ts-ignore carefully

  7. Quality score duplication: Signal quality calculation exists in BOTH check-risk and execute endpoints - keep logic synchronized

  8. Runner configuration confusion:

    • TAKE_PROFIT_1_SIZE_PERCENT=75 means "close 75% at TP1" (not "keep 75%")
    • TAKE_PROFIT_2_SIZE_PERCENT=80 means "close 80% of REMAINING" (not of original)
    • Actual runner size = (100 - TP1%) × (100 - TP2%) / 100 = 5% with defaults

File Conventions

  • API routes: app/api/[feature]/[action]/route.ts (Next.js 15 App Router)
  • Services: lib/[service]/[module].ts (drift, pyth, trading, database)
  • Config: Single source in config/trading.ts with env merging
  • Types: Define interfaces in same file as implementation (not separate types directory)
  • Console logs: Use emojis for visual scanning: 🎯 🚀 💰 📊 🛡️

When Making Changes

  1. Adding new config: Update DEFAULT_TRADING_CONFIG + getConfigFromEnv() + .env file
  2. Adding database fields: Update prisma/schema.prisma → npx prisma migrate devnpx prisma generate → rebuild Docker
  3. Changing order logic: Test with DRY_RUN=true first, use small position sizes ($10)
  4. API endpoint changes: Update both endpoint + corresponding n8n workflow JSON (Check Risk and Execute Trade nodes)
  5. Docker changes: Rebuild with docker compose build trading-bot then restart container
  6. Modifying quality score logic: Update BOTH /api/trading/check-risk and /api/trading/execute endpoints
  7. Exit strategy changes: Modify Position Manager logic + update on-chain order placement in placeExitOrders()

Development Roadmap

See POSITION_SCALING_ROADMAP.md for planned optimizations:

  • Phase 1 (CURRENT): Collect data with quality scores (20-50 trades needed)
  • Phase 2: ATR-based dynamic targets (adapt to volatility)
  • Phase 3: Signal quality-based scaling (high quality = larger runners)
  • Phase 4: Direction-based optimization (shorts vs longs have different performance)
  • Phase 5: Optimize runner size (5% → 10-25%) and trailing stop (0.3% fixed → ATR-based)
  • Phase 6: ML-based exit prediction (future)

Data-driven approach: Each phase requires validation through SQL analysis before implementation. No premature optimization.

Integration Points

  • n8n: Expects exact response format from /api/trading/execute (see n8n-complete-workflow.json)
  • Drift Protocol: Uses SDK v2.75.0 - check docs at docs.drift.trade for API changes
  • Pyth Network: WebSocket + HTTP fallback for price feeds (handles reconnection)
  • PostgreSQL: Version 16-alpine, must be running before bot starts

Key Mental Model: Think of this as two parallel systems (on-chain orders + software monitoring) working together. The Position Manager is the "backup brain" that constantly watches and acts if on-chain orders fail. Both write to the same database for complete trade history.