Initial project structure: MarketScanner - Fear-to-Fortune Trading Intelligence

Features:
- FastAPI backend with stocks, news, signals, watchlist, analytics endpoints
- React frontend with TailwindCSS dark mode trading dashboard
- Celery workers for news fetching, sentiment analysis, pattern detection
- TimescaleDB schema for time-series stock data
- Docker Compose setup for all services
- OpenAI integration for sentiment analysis
This commit is contained in:
mindesbunister
2026-01-08 14:15:51 +01:00
commit 074787f067
58 changed files with 4864 additions and 0 deletions

View File

@@ -0,0 +1,48 @@
"""Panic event model."""
from sqlalchemy import Column, String, Text, Boolean, DateTime, Numeric, Integer, ForeignKey
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.sql import func
import uuid
from app.core.database import Base
class PanicEvent(Base):
"""Panic event table model."""
__tablename__ = "panic_events"
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
stock_id = Column(UUID(as_uuid=True), ForeignKey("stocks.id", ondelete="CASCADE"), nullable=False, index=True)
# Event timing
start_time = Column(DateTime(timezone=True), nullable=False, index=True)
peak_time = Column(DateTime(timezone=True))
end_time = Column(DateTime(timezone=True))
# Price impact
price_at_start = Column(Numeric(15, 4), nullable=False)
price_at_peak_panic = Column(Numeric(15, 4))
price_at_end = Column(Numeric(15, 4))
max_drawdown_percent = Column(Numeric(8, 4), index=True)
# Sentiment
avg_sentiment_score = Column(Numeric(5, 2))
min_sentiment_score = Column(Numeric(5, 2))
news_volume = Column(Integer)
# Recovery metrics
recovery_time_days = Column(Integer)
recovery_percent = Column(Numeric(8, 4))
# Classification
event_type = Column(String(100), index=True) # earnings_miss, scandal, lawsuit, macro, etc.
event_category = Column(String(50)) # company_specific, sector_wide, market_wide
# Analysis
is_complete = Column(Boolean, default=False)
notes = Column(Text)
created_at = Column(DateTime(timezone=True), server_default=func.now())
updated_at = Column(DateTime(timezone=True), server_default=func.now(), onupdate=func.now())