Files
marketscanner/backend/app/models/panic.py
mindesbunister 074787f067 Initial project structure: MarketScanner - Fear-to-Fortune Trading Intelligence
Features:
- FastAPI backend with stocks, news, signals, watchlist, analytics endpoints
- React frontend with TailwindCSS dark mode trading dashboard
- Celery workers for news fetching, sentiment analysis, pattern detection
- TimescaleDB schema for time-series stock data
- Docker Compose setup for all services
- OpenAI integration for sentiment analysis
2026-01-08 14:15:51 +01:00

49 lines
1.7 KiB
Python

"""Panic event model."""
from sqlalchemy import Column, String, Text, Boolean, DateTime, Numeric, Integer, ForeignKey
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.sql import func
import uuid
from app.core.database import Base
class PanicEvent(Base):
"""Panic event table model."""
__tablename__ = "panic_events"
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
stock_id = Column(UUID(as_uuid=True), ForeignKey("stocks.id", ondelete="CASCADE"), nullable=False, index=True)
# Event timing
start_time = Column(DateTime(timezone=True), nullable=False, index=True)
peak_time = Column(DateTime(timezone=True))
end_time = Column(DateTime(timezone=True))
# Price impact
price_at_start = Column(Numeric(15, 4), nullable=False)
price_at_peak_panic = Column(Numeric(15, 4))
price_at_end = Column(Numeric(15, 4))
max_drawdown_percent = Column(Numeric(8, 4), index=True)
# Sentiment
avg_sentiment_score = Column(Numeric(5, 2))
min_sentiment_score = Column(Numeric(5, 2))
news_volume = Column(Integer)
# Recovery metrics
recovery_time_days = Column(Integer)
recovery_percent = Column(Numeric(8, 4))
# Classification
event_type = Column(String(100), index=True) # earnings_miss, scandal, lawsuit, macro, etc.
event_category = Column(String(50)) # company_specific, sector_wide, market_wide
# Analysis
is_complete = Column(Boolean, default=False)
notes = Column(Text)
created_at = Column(DateTime(timezone=True), server_default=func.now())
updated_at = Column(DateTime(timezone=True), server_default=func.now(), onupdate=func.now())