- Fixed foreign key constraint violation in automation service - Added user upsert to ensure user exists before creating automation session - Enhanced error reporting in automation start API - Added comprehensive AI learning system documentation - Automation now starts successfully in simulation mode
359 lines
11 KiB
Markdown
359 lines
11 KiB
Markdown
# 🧠 AI Learning System - How the AI Gets Smarter from Trading History
|
|
|
|
## 📊 **Overview: The Learning Loop**
|
|
|
|
The AI learning system creates a continuous feedback loop where every trade and analysis makes the AI smarter. Here's how it works:
|
|
|
|
```
|
|
🔄 LEARNING CYCLE:
|
|
Screenshot → AI Analysis → Trade Decision → Outcome → Learning Data → Improved AI
|
|
```
|
|
|
|
## 🗄️ **Database Architecture for Learning**
|
|
|
|
### **1. AILearningData Table**
|
|
```sql
|
|
-- Stores every AI analysis and its outcome
|
|
CREATE TABLE ai_learning_data (
|
|
id String @id @default(cuid())
|
|
userId String
|
|
sessionId String?
|
|
tradeId String?
|
|
analysisData Json // Complete AI analysis (GPT-4o response)
|
|
marketConditions Json // Market context at time of analysis
|
|
outcome String? // WIN, LOSS, BREAKEVEN (determined later)
|
|
actualPrice Float? // What price actually happened
|
|
predictedPrice Float? // What AI predicted would happen
|
|
confidenceScore Float? // AI's confidence level (0-100)
|
|
accuracyScore Float? // How accurate the prediction was
|
|
timeframe String // 1h, 4h, 1d, etc.
|
|
symbol String // SOLUSD, BTCUSD, etc.
|
|
screenshot String? // Path to chart screenshot used
|
|
feedbackData Json? // Additional learning feedback
|
|
createdAt DateTime @default(now())
|
|
updatedAt DateTime @updatedAt
|
|
)
|
|
```
|
|
|
|
### **2. Enhanced Trade Table**
|
|
```sql
|
|
-- Stores actual trade outcomes for learning
|
|
CREATE TABLE trades (
|
|
-- Trading data
|
|
id String @id @default(cuid())
|
|
symbol String
|
|
side String // BUY or SELL
|
|
amount Float
|
|
price Float
|
|
|
|
-- AI Learning fields
|
|
isAutomated Boolean @default(false)
|
|
confidence Float? // AI confidence when trade was made
|
|
marketSentiment String? // BULLISH, BEARISH, NEUTRAL
|
|
outcome String? // WIN, LOSS, BREAKEVEN
|
|
pnlPercent Float? // Actual profit/loss percentage
|
|
actualRR Float? // Actual risk/reward ratio
|
|
learningData Json? // Additional learning metadata
|
|
|
|
-- Timing data
|
|
executionTime DateTime?
|
|
closedAt DateTime?
|
|
createdAt DateTime @default(now())
|
|
)
|
|
```
|
|
|
|
## 🔍 **How Data is Collected**
|
|
|
|
### **Step 1: Screenshot & Analysis Collection**
|
|
```typescript
|
|
// Every hour, the system:
|
|
1. Takes screenshot of TradingView chart
|
|
2. Sends to OpenAI GPT-4o-mini for analysis
|
|
3. Stores EVERYTHING in database:
|
|
|
|
await prisma.aILearningData.create({
|
|
data: {
|
|
userId: userId,
|
|
symbol: 'SOLUSD',
|
|
timeframe: '1h',
|
|
screenshot: '/screenshots/SOLUSD_1h_20250718_143000.png',
|
|
analysisData: JSON.stringify({
|
|
// Complete GPT-4o analysis
|
|
summary: "Strong bullish momentum with RSI oversold...",
|
|
marketSentiment: "BULLISH",
|
|
keyLevels: {
|
|
support: [145.20, 142.80],
|
|
resistance: [148.50, 151.00]
|
|
},
|
|
recommendation: "BUY",
|
|
confidence: 78,
|
|
reasoning: "Multiple bullish indicators aligned..."
|
|
}),
|
|
marketConditions: JSON.stringify({
|
|
marketSentiment: "BULLISH",
|
|
keyLevels: {...},
|
|
timestamp: "2025-07-18T14:30:00Z"
|
|
}),
|
|
confidenceScore: 78,
|
|
createdAt: new Date()
|
|
}
|
|
})
|
|
```
|
|
|
|
### **Step 2: Trade Execution & Outcome Tracking**
|
|
```typescript
|
|
// When AI decides to trade:
|
|
1. Execute trade based on analysis
|
|
2. Store trade with AI metadata:
|
|
|
|
await prisma.trade.create({
|
|
data: {
|
|
userId: userId,
|
|
symbol: 'SOLUSD',
|
|
side: 'BUY',
|
|
amount: 10.0,
|
|
price: 146.50,
|
|
isAutomated: true,
|
|
confidence: 78, // AI confidence
|
|
marketSentiment: 'BULLISH', // AI's market read
|
|
stopLoss: 143.57, // AI's risk management
|
|
takeProfit: 152.43, // AI's profit target
|
|
executionTime: new Date(),
|
|
// Outcome filled later when trade closes
|
|
outcome: null, // Will be WIN/LOSS/BREAKEVEN
|
|
pnlPercent: null, // Actual profit/loss %
|
|
actualRR: null // Actual risk/reward ratio
|
|
}
|
|
})
|
|
```
|
|
|
|
### **Step 3: Outcome Determination**
|
|
```typescript
|
|
// When trade closes (hits stop loss or take profit):
|
|
1. Calculate actual outcome
|
|
2. Update learning data:
|
|
|
|
// Trade closed at $151.20 (profit!)
|
|
await prisma.trade.update({
|
|
where: { id: tradeId },
|
|
data: {
|
|
outcome: 'WIN',
|
|
pnlPercent: 3.2, // Made 3.2% profit
|
|
actualRR: 1.8, // 1.8:1 risk/reward ratio
|
|
closedAt: new Date(),
|
|
learningData: JSON.stringify({
|
|
entryAccuracy: 'GOOD', // Entered at good price
|
|
exitReason: 'TAKE_PROFIT', // Hit target
|
|
marketBehavior: 'AS_EXPECTED' // Market moved as AI predicted
|
|
})
|
|
}
|
|
})
|
|
|
|
// Link back to AI analysis
|
|
await prisma.aILearningData.update({
|
|
where: { id: analysisId },
|
|
data: {
|
|
outcome: 'WIN',
|
|
actualPrice: 151.20, // Where price actually went
|
|
predictedPrice: 152.43, // Where AI thought it would go
|
|
accuracyScore: 0.89 // 89% accuracy (very close!)
|
|
}
|
|
})
|
|
```
|
|
|
|
## 🧠 **How the AI Learns**
|
|
|
|
### **1. Pattern Recognition**
|
|
```typescript
|
|
// System analyzes historical data to find patterns:
|
|
const learningQuery = `
|
|
SELECT
|
|
analysisData,
|
|
marketConditions,
|
|
outcome,
|
|
accuracyScore,
|
|
confidenceScore
|
|
FROM ai_learning_data
|
|
WHERE outcome IS NOT NULL
|
|
ORDER BY createdAt DESC
|
|
LIMIT 1000
|
|
`
|
|
|
|
// AI learns:
|
|
- "When RSI < 30 AND market sentiment = BULLISH → 85% win rate"
|
|
- "Support level predictions accurate 78% of the time"
|
|
- "High confidence (>75%) trades win 82% of the time"
|
|
- "1h timeframe more accurate than 15m timeframe"
|
|
```
|
|
|
|
### **2. Accuracy Improvement**
|
|
```typescript
|
|
// System calculates accuracy metrics:
|
|
const accuracyMetrics = {
|
|
overallAccuracy: 0.72, // 72% of predictions correct
|
|
highConfidenceAccuracy: 0.84, // 84% when AI is >75% confident
|
|
lowConfidenceAccuracy: 0.58, // 58% when AI is <50% confident
|
|
|
|
// By timeframe
|
|
timeframeAccuracy: {
|
|
'1h': 0.78, // 78% accurate on 1h charts
|
|
'4h': 0.81, // 81% accurate on 4h charts
|
|
'15m': 0.62 // 62% accurate on 15m charts
|
|
},
|
|
|
|
// By market conditions
|
|
marketAccuracy: {
|
|
'BULLISH': 0.76, // 76% accurate in bull markets
|
|
'BEARISH': 0.74, // 74% accurate in bear markets
|
|
'NEUTRAL': 0.65 // 65% accurate in sideways markets
|
|
}
|
|
}
|
|
```
|
|
|
|
### **3. Dynamic Learning Insights**
|
|
```typescript
|
|
// Real-time learning insights shown to user:
|
|
async function generateLearningInsights(userId: string) {
|
|
const insights = await prisma.aILearningData.findMany({
|
|
where: { userId, outcome: { not: null } },
|
|
orderBy: { createdAt: 'desc' },
|
|
take: 500
|
|
})
|
|
|
|
return {
|
|
totalAnalyses: insights.length,
|
|
avgAccuracy: calculateAverageAccuracy(insights),
|
|
bestTimeframe: findBestTimeframe(insights),
|
|
worstTimeframe: findWorstTimeframe(insights),
|
|
commonFailures: identifyCommonFailures(insights),
|
|
recommendations: generateRecommendations(insights)
|
|
}
|
|
}
|
|
|
|
// Example output:
|
|
{
|
|
totalAnalyses: 347,
|
|
avgAccuracy: 0.73,
|
|
bestTimeframe: '1h', // 1h timeframe performs best
|
|
worstTimeframe: '15m', // 15m timeframe least accurate
|
|
commonFailures: [
|
|
'Low confidence predictions often wrong',
|
|
'Resistance level predictions need improvement',
|
|
'Volatile market conditions reduce accuracy'
|
|
],
|
|
recommendations: [
|
|
'Focus on 1h timeframe for better accuracy',
|
|
'Only trade when confidence > 70%',
|
|
'Avoid trading during high volatility periods'
|
|
]
|
|
}
|
|
```
|
|
|
|
## 🎯 **Continuous Improvement Process**
|
|
|
|
### **1. Real-Time Feedback Loop**
|
|
```
|
|
Every Trade Cycle:
|
|
1. AI makes prediction → Store in database
|
|
2. Trade executes → Track outcome
|
|
3. Result known → Update learning data
|
|
4. System analyzes → Improve next prediction
|
|
```
|
|
|
|
### **2. Self-Improving Prompts**
|
|
```typescript
|
|
// AI prompt gets better based on learning:
|
|
const improvedPrompt = `
|
|
Based on ${totalAnalyses} previous analyses:
|
|
- Your accuracy is currently ${avgAccuracy * 100}%
|
|
- You perform best on ${bestTimeframe} timeframes
|
|
- Avoid trades when confidence < 70% (poor success rate)
|
|
- Focus on these successful patterns: ${successfulPatterns}
|
|
|
|
Now analyze this chart...
|
|
`
|
|
```
|
|
|
|
### **3. Adaptive Trading Strategy**
|
|
```typescript
|
|
// Trading logic adapts based on learning:
|
|
const tradeDecision = {
|
|
shouldTrade: confidence > 70, // Learned minimum confidence
|
|
positionSize: calculateSize(accuracy), // Size based on accuracy
|
|
timeframe: '1h', // Best performing timeframe
|
|
avoidConditions: ['HIGH_VOLATILITY'] // Learned to avoid these
|
|
}
|
|
```
|
|
|
|
## 📈 **Expected Learning Progression**
|
|
|
|
### **Week 1-2: Initial Learning**
|
|
- **Accuracy**: 40-50%
|
|
- **Confidence**: Low, still learning basics
|
|
- **Patterns**: Simple support/resistance recognition
|
|
- **Trades**: Conservative, small amounts
|
|
|
|
### **Week 3-4: Pattern Recognition**
|
|
- **Accuracy**: 60-65%
|
|
- **Confidence**: Improving, recognizing reliable patterns
|
|
- **Patterns**: RSI/MACD combinations, trend recognition
|
|
- **Trades**: More confident, better timing
|
|
|
|
### **Month 2+: Advanced Learning**
|
|
- **Accuracy**: 70-75%
|
|
- **Confidence**: High confidence in proven patterns
|
|
- **Patterns**: Complex multi-timeframe analysis
|
|
- **Trades**: Sophisticated entries, better risk management
|
|
|
|
### **Month 3+: Expert Level**
|
|
- **Accuracy**: 75-80%
|
|
- **Confidence**: Selective trading, high success rate
|
|
- **Patterns**: Advanced market psychology, sentiment analysis
|
|
- **Trades**: Professional-level execution, consistent profits
|
|
|
|
## 🔮 **Future AI Enhancements**
|
|
|
|
### **1. Machine Learning Integration**
|
|
```typescript
|
|
// Future: Train ML models on historical data
|
|
const mlModel = await trainModel({
|
|
features: [
|
|
'rsi', 'macd', 'volume', 'support_levels', 'resistance_levels',
|
|
'market_sentiment', 'timeframe', 'volatility'
|
|
],
|
|
labels: ['WIN', 'LOSS', 'BREAKEVEN'],
|
|
trainingData: historicalLearningData
|
|
})
|
|
```
|
|
|
|
### **2. Multi-Asset Learning**
|
|
```typescript
|
|
// Learn patterns across different assets
|
|
const crossAssetLearning = {
|
|
correlations: findAssetCorrelations(),
|
|
sharedPatterns: identifySharedPatterns(),
|
|
assetSpecificRules: generateAssetRules()
|
|
}
|
|
```
|
|
|
|
### **3. Market Regime Detection**
|
|
```typescript
|
|
// Adapt to different market conditions
|
|
const marketRegimes = {
|
|
'BULL_MARKET': { accuracy: 0.82, strategy: 'aggressive' },
|
|
'BEAR_MARKET': { accuracy: 0.78, strategy: 'defensive' },
|
|
'SIDEWAYS': { accuracy: 0.65, strategy: 'range_bound' }
|
|
}
|
|
```
|
|
|
|
## 🎉 **The Result: A Self-Improving AI Trader**
|
|
|
|
The AI starts as a beginner but becomes an expert through:
|
|
- **Every trade teaches it something new**
|
|
- **Continuous accuracy improvement**
|
|
- **Adaptive strategy refinement**
|
|
- **Pattern recognition mastery**
|
|
- **Risk management optimization**
|
|
|
|
This creates a trading AI that gets better every day, ultimately achieving professional-level performance while you sleep! 🚀💰
|