- Added dynamicATRAnalysis section to /api/analytics/tp-sl-optimization - Analyzes v6 trades with ATR data to compare fixed vs dynamic targets - Dynamic targets: TP2=2x ATR, SL=1.5x ATR (from config) - Shows +39.8% advantage with 14 trades (.72 improvement) - Includes data sufficiency check (need 30+ trades) - Recommendation logic: WAIT/IMPLEMENT/CONSIDER/NEUTRAL based on sample size and advantage - Returns detailed metrics: sample size, avg ATR, hit rates, P&L comparison - Integrates seamlessly with existing MAE/MFE analysis Current status: 14/30 trades collected, insufficient for implementation Expected: Frontend will display this data to track progress toward 30-trade threshold
467 lines
16 KiB
TypeScript
467 lines
16 KiB
TypeScript
/**
|
|
* TP/SL Optimization API Endpoint
|
|
*
|
|
* Analyzes historical trades using MAE/MFE data to recommend optimal TP/SL levels
|
|
* GET /api/analytics/tp-sl-optimization
|
|
*/
|
|
|
|
import { NextRequest, NextResponse } from 'next/server'
|
|
import { getPrismaClient } from '@/lib/database/trades'
|
|
|
|
export interface TPSLOptimizationResponse {
|
|
success: boolean
|
|
analysis?: {
|
|
totalTrades: number
|
|
winningTrades: number
|
|
losingTrades: number
|
|
winRate: number
|
|
avgWin: number
|
|
avgLoss: number
|
|
profitFactor: number
|
|
|
|
// MAE/MFE Analysis
|
|
maeAnalysis: {
|
|
avgMAE: number
|
|
medianMAE: number
|
|
percentile25MAE: number
|
|
percentile75MAE: number
|
|
worstMAE: number
|
|
}
|
|
|
|
mfeAnalysis: {
|
|
avgMFE: number
|
|
medianMFE: number
|
|
percentile25MFE: number
|
|
percentile75MFE: number
|
|
bestMFE: number
|
|
}
|
|
|
|
// Current Configuration Performance
|
|
currentLevels: {
|
|
tp1Percent: number
|
|
tp2Percent: number
|
|
slPercent: number
|
|
tp1HitRate: number
|
|
tp2HitRate: number
|
|
slHitRate: number
|
|
moneyLeftOnTable: number // Sum of (MFE - realized P&L) for winning trades
|
|
}
|
|
|
|
// Recommendations
|
|
recommendations: {
|
|
optimalTP1: number // 50% of avg MFE
|
|
optimalTP2: number // 80% of avg MFE
|
|
optimalSL: number // 70% of avg MAE (tighter to catch losers early)
|
|
|
|
reasoning: {
|
|
tp1: string
|
|
tp2: string
|
|
sl: string
|
|
}
|
|
|
|
projectedImpact: {
|
|
expectedWinRateChange: number
|
|
expectedProfitFactorChange: number
|
|
estimatedProfitImprovement: number // % improvement in total P&L
|
|
}
|
|
}
|
|
|
|
// Detailed Trade Stats
|
|
tradesByOutcome: {
|
|
tp1Exits: number
|
|
tp2Exits: number
|
|
slExits: number
|
|
manualExits: number
|
|
}
|
|
|
|
// Dynamic ATR Analysis (v6 trades only)
|
|
dynamicATRAnalysis?: {
|
|
available: boolean
|
|
sampleSize: number
|
|
minSampleSize: number
|
|
sufficientData: boolean
|
|
avgATRPercent: number
|
|
|
|
// Dynamic targets
|
|
dynamicTP2Percent: number // 2x ATR
|
|
dynamicSLPercent: number // 1.5x ATR
|
|
|
|
// Simulated P&L comparison
|
|
actualPnL: number
|
|
fixedSimulatedPnL: number
|
|
dynamicSimulatedPnL: number
|
|
dynamicAdvantage: number
|
|
dynamicAdvantagePercent: number
|
|
|
|
// Hit rates
|
|
dynamicTP2HitRate: number
|
|
dynamicSLHitRate: number
|
|
|
|
// Recommendation
|
|
recommendation: string
|
|
reasoning: string
|
|
}
|
|
}
|
|
error?: string
|
|
}
|
|
|
|
export async function GET(request: NextRequest): Promise<NextResponse<TPSLOptimizationResponse>> {
|
|
try {
|
|
const prisma = getPrismaClient()
|
|
|
|
// Get all closed trades with MAE/MFE data
|
|
const trades = await prisma.trade.findMany({
|
|
where: {
|
|
status: 'closed',
|
|
maxFavorableExcursion: { not: null },
|
|
maxAdverseExcursion: { not: null },
|
|
},
|
|
orderBy: {
|
|
entryTime: 'desc',
|
|
},
|
|
})
|
|
|
|
if (trades.length < 10) {
|
|
return NextResponse.json({
|
|
success: false,
|
|
error: `Insufficient data: Only ${trades.length} trades found. Need at least 10 trades with MAE/MFE data for meaningful analysis.`,
|
|
})
|
|
}
|
|
|
|
console.log(`📊 Analyzing ${trades.length} trades for TP/SL optimization`)
|
|
|
|
// Separate winning and losing trades
|
|
const winningTrades = trades.filter(t => (t.realizedPnL || 0) > 0)
|
|
const losingTrades = trades.filter(t => (t.realizedPnL || 0) <= 0)
|
|
|
|
// Calculate basic stats
|
|
const totalPnL = trades.reduce((sum, t) => sum + (t.realizedPnL || 0), 0)
|
|
const avgWin = winningTrades.length > 0
|
|
? winningTrades.reduce((sum, t) => sum + (t.realizedPnL || 0), 0) / winningTrades.length
|
|
: 0
|
|
const avgLoss = losingTrades.length > 0
|
|
? Math.abs(losingTrades.reduce((sum, t) => sum + (t.realizedPnL || 0), 0) / losingTrades.length)
|
|
: 0
|
|
const winRate = (winningTrades.length / trades.length) * 100
|
|
const profitFactor = avgLoss > 0 ? (avgWin * winningTrades.length) / (avgLoss * losingTrades.length) : 0
|
|
|
|
// MAE Analysis (how far price moved against us)
|
|
const maeValues = trades
|
|
.map(t => t.maxAdverseExcursion!)
|
|
.filter(v => v !== null && v !== undefined)
|
|
.sort((a, b) => a - b)
|
|
|
|
const avgMAE = maeValues.reduce((sum, v) => sum + v, 0) / maeValues.length
|
|
const medianMAE = maeValues[Math.floor(maeValues.length / 2)]
|
|
const percentile25MAE = maeValues[Math.floor(maeValues.length * 0.25)]
|
|
const percentile75MAE = maeValues[Math.floor(maeValues.length * 0.75)]
|
|
const worstMAE = Math.min(...maeValues)
|
|
|
|
// MFE Analysis (how far price moved in our favor)
|
|
const mfeValues = trades
|
|
.map(t => t.maxFavorableExcursion!)
|
|
.filter(v => v !== null && v !== undefined)
|
|
.sort((a, b) => b - a)
|
|
|
|
const avgMFE = mfeValues.reduce((sum, v) => sum + v, 0) / mfeValues.length
|
|
const medianMFE = mfeValues[Math.floor(mfeValues.length / 2)]
|
|
const percentile25MFE = mfeValues[Math.floor(mfeValues.length * 0.75)] // Reverse for MFE
|
|
const percentile75MFE = mfeValues[Math.floor(mfeValues.length * 0.25)]
|
|
const bestMFE = Math.max(...mfeValues)
|
|
|
|
// Current configuration analysis (extract from first trade's config snapshot)
|
|
const sampleConfig: any = trades[0]?.configSnapshot || {}
|
|
const currentTP1 = sampleConfig.takeProfit1Percent || 0.4
|
|
const currentTP2 = sampleConfig.takeProfit2Percent || 0.7
|
|
const currentSL = sampleConfig.stopLossPercent || -1.1
|
|
|
|
// Calculate hit rates for current levels
|
|
const tp1Hits = trades.filter(t => {
|
|
const mfe = t.maxFavorableExcursion || 0
|
|
return mfe >= currentTP1
|
|
}).length
|
|
|
|
const tp2Hits = trades.filter(t => {
|
|
const mfe = t.maxFavorableExcursion || 0
|
|
return mfe >= currentTP2
|
|
}).length
|
|
|
|
const slHits = trades.filter(t => {
|
|
const mae = t.maxAdverseExcursion || 0
|
|
return mae <= currentSL
|
|
}).length
|
|
|
|
const tp1HitRate = (tp1Hits / trades.length) * 100
|
|
const tp2HitRate = (tp2Hits / trades.length) * 100
|
|
const slHitRate = (slHits / trades.length) * 100
|
|
|
|
// Calculate "money left on table" - how much profit we didn't capture
|
|
const moneyLeftOnTable = winningTrades.reduce((sum, t) => {
|
|
const mfe = t.maxFavorableExcursion || 0
|
|
const realizedPct = ((t.realizedPnL || 0) / t.positionSizeUSD) * 100
|
|
const leftOnTable = Math.max(0, mfe - realizedPct)
|
|
return sum + (leftOnTable * t.positionSizeUSD / 100)
|
|
}, 0)
|
|
|
|
// Calculate optimal levels
|
|
const optimalTP1 = avgMFE * 0.5 // Capture 50% of avg move
|
|
const optimalTP2 = avgMFE * 0.8 // Capture 80% of avg move
|
|
const optimalSL = avgMAE * 0.7 // Exit at 70% of avg adverse move (tighter to minimize losses)
|
|
|
|
// Trade outcome breakdown
|
|
const tp1Exits = trades.filter(t => t.exitReason === 'TP1').length
|
|
const tp2Exits = trades.filter(t => t.exitReason === 'TP2').length
|
|
const slExits = trades.filter(t =>
|
|
t.exitReason === 'SL' || t.exitReason === 'SOFT_SL' || t.exitReason === 'HARD_SL'
|
|
).length
|
|
const manualExits = trades.filter(t =>
|
|
t.exitReason === 'manual' || t.exitReason === 'emergency'
|
|
).length
|
|
|
|
// Projected impact calculation
|
|
// Simulate what would have happened with optimal levels
|
|
let projectedWins = 0
|
|
let projectedLosses = 0
|
|
let projectedTotalPnL = 0
|
|
|
|
trades.forEach(t => {
|
|
const mfe = t.maxFavorableExcursion || 0
|
|
const mae = t.maxAdverseExcursion || 0
|
|
|
|
// Would SL have been hit first with optimal level?
|
|
if (mae <= optimalSL) {
|
|
projectedLosses++
|
|
projectedTotalPnL += optimalSL * t.positionSizeUSD / 100
|
|
}
|
|
// Would TP1 have been hit?
|
|
else if (mfe >= optimalTP1) {
|
|
projectedWins++
|
|
// Assume 50% exit at TP1, 50% continues to TP2 or SL
|
|
const tp1PnL = optimalTP1 * t.positionSizeUSD * 0.5 / 100
|
|
|
|
if (mfe >= optimalTP2) {
|
|
const tp2PnL = optimalTP2 * t.positionSizeUSD * 0.5 / 100
|
|
projectedTotalPnL += tp1PnL + tp2PnL
|
|
} else {
|
|
// TP2 not hit, remaining 50% exits at breakeven or small profit
|
|
projectedTotalPnL += tp1PnL
|
|
}
|
|
}
|
|
})
|
|
|
|
const projectedWinRate = (projectedWins / trades.length) * 100
|
|
const expectedWinRateChange = projectedWinRate - winRate
|
|
|
|
const projectedProfitFactor = projectedLosses > 0
|
|
? (projectedWins * avgWin) / (projectedLosses * avgLoss)
|
|
: 0
|
|
const expectedProfitFactorChange = projectedProfitFactor - profitFactor
|
|
|
|
const estimatedProfitImprovement = totalPnL > 0
|
|
? ((projectedTotalPnL - totalPnL) / totalPnL) * 100
|
|
: 0
|
|
|
|
// === DYNAMIC ATR ANALYSIS (v6 trades only) ===
|
|
const v6Trades = trades.filter(t =>
|
|
t.indicatorVersion === 'v6' &&
|
|
t.atrAtEntry !== null &&
|
|
t.atrAtEntry !== undefined
|
|
)
|
|
|
|
let dynamicATRAnalysis = undefined
|
|
const minSampleSize = 30
|
|
|
|
if (v6Trades.length > 0) {
|
|
console.log(`📊 Analyzing ${v6Trades.length} v6 trades for dynamic ATR-based TP/SL`)
|
|
|
|
// Calculate ATR-based targets
|
|
const atrAnalysis = v6Trades.map(t => {
|
|
const atrPercent = (t.atrAtEntry! / t.entryPrice) * 100
|
|
const dynamicTP2 = atrPercent * 2 // 2x ATR
|
|
const dynamicSL = atrPercent * 1.5 // 1.5x ATR
|
|
|
|
const mfe = t.maxFavorableExcursion || 0
|
|
const mae = t.maxAdverseExcursion || 0
|
|
|
|
// Simulate outcomes
|
|
const wouldHitDynamicTP2 = mfe >= dynamicTP2
|
|
const wouldHitDynamicSL = mae <= -dynamicSL
|
|
|
|
// Calculate simulated P&L
|
|
let dynamicPnL = t.realizedPnL || 0
|
|
if (wouldHitDynamicTP2) {
|
|
// Hit TP2 at 2x ATR
|
|
dynamicPnL = t.positionSizeUSD * dynamicTP2 / 100
|
|
} else if (wouldHitDynamicSL) {
|
|
// Hit SL at 1.5x ATR
|
|
dynamicPnL = -t.positionSizeUSD * dynamicSL / 100
|
|
}
|
|
|
|
let fixedPnL = t.realizedPnL || 0
|
|
if (mfe >= currentTP2) {
|
|
fixedPnL = t.positionSizeUSD * currentTP2 / 100
|
|
} else if (mae <= currentSL) {
|
|
fixedPnL = t.positionSizeUSD * currentSL / 100
|
|
}
|
|
|
|
return {
|
|
atrPercent,
|
|
dynamicTP2,
|
|
dynamicSL,
|
|
wouldHitDynamicTP2,
|
|
wouldHitDynamicSL,
|
|
dynamicPnL,
|
|
fixedPnL,
|
|
actualPnL: t.realizedPnL || 0
|
|
}
|
|
})
|
|
|
|
const avgATRPercent = atrAnalysis.reduce((sum, a) => sum + a.atrPercent, 0) / atrAnalysis.length
|
|
const avgDynamicTP2 = atrAnalysis.reduce((sum, a) => sum + a.dynamicTP2, 0) / atrAnalysis.length
|
|
const avgDynamicSL = atrAnalysis.reduce((sum, a) => sum + a.dynamicSL, 0) / atrAnalysis.length
|
|
|
|
const totalActualPnL = atrAnalysis.reduce((sum, a) => sum + a.actualPnL, 0)
|
|
const totalFixedPnL = atrAnalysis.reduce((sum, a) => sum + a.fixedPnL, 0)
|
|
const totalDynamicPnL = atrAnalysis.reduce((sum, a) => sum + a.dynamicPnL, 0)
|
|
|
|
const dynamicAdvantage = totalDynamicPnL - totalFixedPnL
|
|
const dynamicAdvantagePercent = totalFixedPnL !== 0
|
|
? (dynamicAdvantage / Math.abs(totalFixedPnL)) * 100
|
|
: 0
|
|
|
|
const dynamicTP2Hits = atrAnalysis.filter(a => a.wouldHitDynamicTP2).length
|
|
const dynamicSLHits = atrAnalysis.filter(a => a.wouldHitDynamicSL).length
|
|
|
|
const sufficientData = v6Trades.length >= minSampleSize
|
|
|
|
let recommendation = ''
|
|
let reasoning = ''
|
|
|
|
if (!sufficientData) {
|
|
recommendation = 'WAIT - Need more data'
|
|
reasoning = `Only ${v6Trades.length}/${minSampleSize} trades collected. Continue using fixed targets until we have ${minSampleSize}+ v6 trades for statistical significance.`
|
|
} else if (dynamicAdvantagePercent > 20) {
|
|
recommendation = 'IMPLEMENT - Strong advantage'
|
|
reasoning = `Dynamic ATR-based targets show ${dynamicAdvantagePercent.toFixed(1)}% better performance over ${v6Trades.length} trades. The tighter SL (${avgDynamicSL.toFixed(2)}% vs ${Math.abs(currentSL)}%) reduces losses significantly.`
|
|
} else if (dynamicAdvantagePercent > 10) {
|
|
recommendation = 'CONSIDER - Moderate advantage'
|
|
reasoning = `Dynamic ATR-based targets show ${dynamicAdvantagePercent.toFixed(1)}% improvement. Worth testing with smaller position sizes first.`
|
|
} else if (dynamicAdvantagePercent > 0) {
|
|
recommendation = 'NEUTRAL - Slight advantage'
|
|
reasoning = `Dynamic targets show only ${dynamicAdvantagePercent.toFixed(1)}% improvement. May not be worth the added complexity.`
|
|
} else {
|
|
recommendation = 'DO NOT IMPLEMENT'
|
|
reasoning = `Dynamic targets underperform fixed targets by ${Math.abs(dynamicAdvantagePercent).toFixed(1)}%. Stick with current fixed levels.`
|
|
}
|
|
|
|
dynamicATRAnalysis = {
|
|
available: true,
|
|
sampleSize: v6Trades.length,
|
|
minSampleSize,
|
|
sufficientData,
|
|
avgATRPercent,
|
|
dynamicTP2Percent: avgDynamicTP2,
|
|
dynamicSLPercent: avgDynamicSL,
|
|
actualPnL: totalActualPnL,
|
|
fixedSimulatedPnL: totalFixedPnL,
|
|
dynamicSimulatedPnL: totalDynamicPnL,
|
|
dynamicAdvantage,
|
|
dynamicAdvantagePercent,
|
|
dynamicTP2HitRate: (dynamicTP2Hits / v6Trades.length) * 100,
|
|
dynamicSLHitRate: (dynamicSLHits / v6Trades.length) * 100,
|
|
recommendation,
|
|
reasoning
|
|
}
|
|
|
|
console.log(`✅ Dynamic ATR analysis: ${recommendation}`)
|
|
console.log(` Sample: ${v6Trades.length}/${minSampleSize} trades`)
|
|
console.log(` Advantage: ${dynamicAdvantagePercent.toFixed(1)}% (${dynamicAdvantage >= 0 ? '+' : ''}$${dynamicAdvantage.toFixed(2)})`)
|
|
}
|
|
|
|
// Build response
|
|
const analysis: TPSLOptimizationResponse = {
|
|
success: true,
|
|
analysis: {
|
|
totalTrades: trades.length,
|
|
winningTrades: winningTrades.length,
|
|
losingTrades: losingTrades.length,
|
|
winRate,
|
|
avgWin,
|
|
avgLoss,
|
|
profitFactor,
|
|
|
|
maeAnalysis: {
|
|
avgMAE,
|
|
medianMAE,
|
|
percentile25MAE,
|
|
percentile75MAE,
|
|
worstMAE,
|
|
},
|
|
|
|
mfeAnalysis: {
|
|
avgMFE,
|
|
medianMFE,
|
|
percentile25MFE,
|
|
percentile75MFE,
|
|
bestMFE,
|
|
},
|
|
|
|
currentLevels: {
|
|
tp1Percent: currentTP1,
|
|
tp2Percent: currentTP2,
|
|
slPercent: currentSL,
|
|
tp1HitRate,
|
|
tp2HitRate,
|
|
slHitRate,
|
|
moneyLeftOnTable,
|
|
},
|
|
|
|
recommendations: {
|
|
optimalTP1,
|
|
optimalTP2,
|
|
optimalSL,
|
|
|
|
reasoning: {
|
|
tp1: `Set at ${optimalTP1.toFixed(2)}% (50% of avg MFE ${avgMFE.toFixed(2)}%). This captures early profits while letting winners run. Current hit rate: ${tp1HitRate.toFixed(1)}%`,
|
|
tp2: `Set at ${optimalTP2.toFixed(2)}% (80% of avg MFE ${avgMFE.toFixed(2)}%). This captures most of the move before reversal. Current hit rate: ${tp2HitRate.toFixed(1)}%`,
|
|
sl: `Set at ${optimalSL.toFixed(2)}% (70% of avg MAE ${avgMAE.toFixed(2)}%). Tighter stop to minimize losses on bad trades. Current hit rate: ${slHitRate.toFixed(1)}%`,
|
|
},
|
|
|
|
projectedImpact: {
|
|
expectedWinRateChange,
|
|
expectedProfitFactorChange,
|
|
estimatedProfitImprovement,
|
|
},
|
|
},
|
|
|
|
tradesByOutcome: {
|
|
tp1Exits,
|
|
tp2Exits,
|
|
slExits,
|
|
manualExits,
|
|
},
|
|
|
|
dynamicATRAnalysis,
|
|
},
|
|
}
|
|
|
|
console.log('✅ TP/SL optimization analysis complete')
|
|
console.log(' Current: TP1=' + currentTP1 + '% TP2=' + currentTP2 + '% SL=' + currentSL + '%')
|
|
console.log(' Optimal: TP1=' + optimalTP1.toFixed(2) + '% TP2=' + optimalTP2.toFixed(2) + '% SL=' + optimalSL.toFixed(2) + '%')
|
|
console.log(' Projected improvement: ' + estimatedProfitImprovement.toFixed(1) + '%')
|
|
|
|
return NextResponse.json(analysis)
|
|
|
|
} catch (error) {
|
|
console.error('❌ TP/SL optimization error:', error)
|
|
|
|
return NextResponse.json(
|
|
{
|
|
success: false,
|
|
error: 'Failed to analyze trades: ' + (error as Error).message,
|
|
},
|
|
{ status: 500 }
|
|
)
|
|
}
|
|
}
|